

EMC TEST REPORT

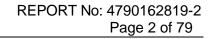
For

Robotic Vacuum Cleaner

MODEL NUMBER: S270RR

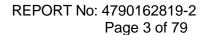
PROJECT NUMBER: 4790162819

REPORT NUMBER: 4790162819-2


ISSUE DATE: Dec. 05, 2021

Prepared for

The Adia International Grand Beijing Robotock Technology Co., Ltd.


Prepared by

-CCIC Company L.
Suzhou Industrial Park,
T: +86-512-6808 6400
F: +86-512-6808 4099 **UL-CCIC Company Limited** No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China

			Revision History	
L Zz	Rev.	Issue Date	Revisions	Revised By
7/	VO	12/05/2021	Initial Issue	
	10			
		1		
		to.		
		8		
		Dx		
		(0)		
			A. C.	
			0	
			Gnb.	
			/ /	
			The state of the s	
				r.
				G.
				Orm.
			Revisions Initial Issue Revision History Revisions Initial Issue	Ph
				22
				'A/A

Test Summary

According to the specifications of the manufacture, the EUT must complies with the following standards' requirements:

EN 55014-1:2017+A11:2020

EN 55014-2:2015

QEN IEC 61000-3-2:2019

EN 61000-3-3:2013+A1:2019

Electromagnetic Interference (EMI)

Liestomagnetic interference (Livii)							
Test Items	Test Method	Reference Clause	Result				
Conducted Emissions at Mains Terminals (150kHz-30MHz)	EN 55014-1:2017+A11:2020	CISPR 16-2-1:2014 +A1:2017	Pass				
Disturbance Power	EN 55014-1:2017+A11:2020	CISPR 16-2-2:2010	N/A				
Radiated Emissions (30MHz- 1GHz)	EN 55014-1:2017+A11:2020	CISPR 16-2-3:2016 +A1:2019	Pass				
Discontinuous disturbances (Clicks)	55014-1:2017+A11:2020	EN 55014-1:2017 +A11:2020	N/A				
Harmonic Current Emission	EN-EC 61000-3-2:2019	EN IEC 61000-3-2:2019	Pass				
Voltage Fluctuations & Flicker	EN 61000-3-3:2013 +A1:2019	EN 61000-3-3:2013 +A1:2019	Pass				
Electromagnetic Susceptib	oility (EMS)						
ESD	EN 55014-2:2015	EN 61000-4-2:2009	PASS				
Radiated Immunity	EN 55014-2:2015	EN IEC 61000-4-3:2020	PASS				
Electrical Fast Transients (EFT)	EN 55014-2:2015	EN 61000-4-4:2012	PASS				
Surge Immunity	EN 55014-2:2015	EN 61000-4-5:2014 +A1:2017	PASS				
Conducted Immunity	EN 55014-2:2015	EN 61000-4-6:2014	PASS				
Voltage Dips and Interruptions	EN 55014-2:2015	EN IEC 61000-4-11:2020	PASS				

Remark:

- 1) N/A is an abbreviation for Not Applicable.
- 2) Pre-test with all operating ranges of voltage and frequency then choose the worst case as result.
- 3) The measurement result for the sample received is <Pass> according to < EN 55014-1:2017+A11:2020; EN 55014-2:2015; EN IEC 61000-3-2:2019; EN 61000-3-3:2013 +A1:2019> when <Accuracy Method> decision rule is applied.

CONTENTS

1 ATTES	STATION OF TEST RESULTS	5
2 TEST	METHODOLOGY	6
3 FACIL	ITIES AND ACCREDITATION	6
	RATION AND UNCERTAINTY	
	MEASURING INSTRUMENT CALIBRATION	
4.2	MEASUREMENT UNCERTAINTY	7
5 EQUIP	PMENT UNDER TEST	
5.1	DESCRIPTION FOR THE EUT	8
5.2	TEST MODE	8
5.3	DESCRIPTION OF TEST SETUP	9
5.4	MEASURING INSTRUMENT AND SOFTWARE USED	
6 ELECT	TROMAGNETIC COMPATIBILITY (EMC)	13
6.1	ELECTROMAGNETIC INTERFERENCE (EMI)	
6.1.1	CONDUCTED EMISSION	13
6.1.2	DISCONTINUOUS DISTURBANCES (CLICKS)	18
6.1.3 6.1.4	HARMONIC FMISSION	20 23
6.1.5	RADIATED EMISSION	27
6.2	ELECTROMACNETIC SUSCERTIBILITY (MM INITY)	20
6.2.1	ELECTROSTATIC DISCHARGE (ESD)	30
6.2.2 6.2.3	ELECTROSTATIC DISCHARGE (ESD) RADIATED IMMUNITY ELECTRICAL FAST TRANSIENTS (EFT) SURGE IMMUNITY CONDUCTED IMMUNITY VOLTAGE DIPS AND INTERRUPTIONS	33
6.2.3 6.2.4	SURGE IMMUNITY	38
6.2.5	CONDUCTED IMMUNITY	41
6.2.6		
7 PHOT	OGRAPHS OF EMC TEST CONFIGURATION	46
7.1	CONDUCTED EMISSION TEST SETUP	46
7.2	RADIATED EMISSION TEST SETUP	47
7.3	HARMONIC CURRENT & VOLTAGE FLUCTUATION AND FLICK MEASUREMENT.	49
7.4	ESD	50
7.5	RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY	 52
7.6	ELECTRICAL FAST TRANSIENT/BURST/SURGE/DIPS	T 34
7.7	CONDUCTED IMMUNITY	55
8 РНОТ	OGRAPHS FO THE EUT	56

REPORT No: 4790162819-2 Page 5 of 79

1 ATTESTATION OF TEST RESULTS

Applicant Informatio	n
----------------------	---

Company Name:

Beijing Roborock Technology Co., Ltd.

Address:

Floor 6, Suite 6016, 6017, 6018, Building C, Kangjian Baosheng Plaza, No. 8 Heiquan Road, Haidian District, 100192 Beijing,

P.R. China

Manufacturer Information

Company Name:

Beijing Roborock Technology Co., Ltd.

Address:

Floor 6, Suite 6016, 6017, 6018, Building C, Kangjian Baosheng Plaza, No. 8 Heiquan Road, Haidian District, 100192 Beijing,

P.R. China

EUT Description

Product Name: Model Number:

Robotic Vacuum Cleaner

S270RR

Sample Number:

4401433, 4387834

Data of Receipt Sample:

Nov. 16, 2021

Date Tested:

16, 2021~ Nov. 28, 2021

<u></u>					
APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
EN 55014-1:2017+A1:2020 EN 55014-2:2015 EN IEC 61000-3-2:2019 EN 61000-3-3:2013+A1:2019	PASS				

Prepared By:	Reviewed By:
Leon Wu	Tom Tang
Leon Wu	Tom Tang
Authorized By:	- Germany mark
Chris Zhong	
Chris Zhong Laboratory Leader	

Page 6 of 79

2 TEST METHODOLOGY

All tests were performed in accordance with the procedures documented EN 55014-1:2017+A11:2020, EN 55014-2:2015, EN IEC 61000-3-2:2019 and EN 61000-3-3:2013+A1:2019.

1/2	EN 55014-2:2015, EN IEC 61000-3-2:2019 and EN 61000-3-3:2013+A1:2019. 3 FACILITIES AND ACCREDITATION						
	Test Location	UL-CCIC Company Limited					
	Address	No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China					
	Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.					

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

of Germany Marker

REPORT No: 4790162819-2 Page 7 of 79

4 CALIBRATION AND UNCERTAINTY

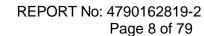
MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus

Test Item	Frequency Range	Measurement Uncertainty	U _{cispr}
Conducted Emission at mains port using AMN	9kHz-150kHz	3.5 dB	3.8 dB
Conducted Emission at mains port using AMN	150kHz-30MHz	3.1 dB	3.4 dB
Conducted Emission at telecommunication port using AAN	150kHz-30MHz	5.0 dB	5.0 dB
Radiated Emission	30MHz-1000MHz	2.5 dB	6.3 dB
Radiated Emission	1GHz-18GHz	3.3 dB	5.2 dB (1GHz-6GHz) 5.5 dB (6GHz-18GHz)

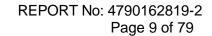

Remark:

AMN - Artificial Mains Network

VP - Voltage Probe

ANN - Asymmetric Artificial Network

ssed a Cornany Marke, Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


EQUIPMENT UNDER TEST

DESCRIPTION FOR THE EUT

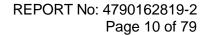
5.1	DESCRIPTIO	N FOR THE EUT
	Product Name:	Robotic Vacuum Cleaner
1 0	Model No.:	S270RR
	Description of EUT:	The EUT is a vacuum cleaner which contains a 2.4GHz band WiFi module. It can be used with Dock Charger or Auto-Empty Dock
	Max operating frequency	>108MHz
	Test voltage:	AC 230V/50Hz
	Rated Input.	Rated Input: 20VDC, 1.2A
	170	Pr.
5.2	TEST MODE	
	Mode 1 Keen FUT (Charing and ock charger

5.2 **TEST MODE**

_	. ! 🗠	ST WODE -
	Mode 1	Keep EUT Charing dock charger
	Mode 2	Keep EUT Charging via Auto-Empty Dock
	Mode 3	Keep EUT working in dust collection condition when use Auto-Empty Dock
	Mode 4	Keep EUT working normally
		Keep EUT working in dust collection condition when use Auto-Empty Dock Keep EUT working normally The inspection of German Marke,
		TSO CONTRACTOR OF THE PROPERTY
		Cr.
		Man,
		The state of the s
		To the second se

5.3 **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT


×							
Atem Equipment		Brand Na	me Mod	Model Name D		escription	
1/L	. /	/		/		/	
O PORT							
Cable	No Port	Connector Type	Cable Type	Cable Le	nath(m)	Remarks	

I/O PORT

Cable I	No Port	Connector Type	Cable Type	Cable Length(m)	Remarks		
1	AC pow		/	120	N/A		
CESSORY							
Item	Item Accessory Brand Name Model Name Description						

ACCESSORY

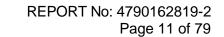
Item	Accessory	Brand Name	Model Name	Description
1	Dock Charger	roborock	CDZ11RR	Input:100-240VAC,50-60Hz, 28W; Output: 20V DC, 1.2A
2	Auto-Empty Dock	roborock	AED02HRR	Input:220-240VAC,50-60Hz, Rated input power for charging: 28W; Rate input power for dust collection: 1000W Output: 20V DC, 1.2A
				Cr.
				O _K
				of Gernany Mark
				Marx
				•

5.4 **MEASURING INSTRUMENT AND SOFTWARE USED**

Conducted Emission

3.4	IVIL		TIXOWILIVI A	140 301 14	VAIL 00	LU		
4),	onduc	ted Emission						
L	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date	
1	1	EMI Test Receiver	R&S	ESR3	126700	2020-12-05	2021-12-04	
0	2	LISN	R&S	ENV216	126701	2020-12-05	2021-12-04	
	77	LISN	AFJ Instruments	LS16C-10	127010	2020-12-05	2021-12-04	
	9	;		Software				
	Item	Descrip	Manufa	cturer	Name	Version		
	1	Test Software for Conducted disturbance		R&S		EMC32	Ver. 9.25	

Radiated Emission 2


ĸ	addated Emission 8									
	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date			
	1	EMI test receiver	t receiver 🕖 R&S		126703	2020-12-05	2021-12-04			
	2	Hybrid Antenna SunAR RF Motion Horn Antenna R&S		JB1	177821	2019-01-28	2022-01-27			
	4			HF907	126705	2019-01-26	2022-01-25			
	5	Amplifier R&S		SCU-18D	134667	2020-12-05	2021-12-04			
	Software									
	Item	Descri	Manufa	cturer	Name	Version				
	1	Test Software Disturb	Tonscend		TS+	Ver. 2.5				

Harmonic &Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date		
1	Single phase Harmonic & Flicker test system	TESEQ	5001IX- CTS-400- SCH	126719	2020-12-05	2021-12-04		
2	Power Source TESEQ		5001IX-400- 413-SCH	137616	2021-06-07	2022-06-05		
	Software							
Item	Descrip	Manufa	cturer	Name	Version			
1	Test Software for Hai Flicker an	TESEQ		Win2001	Ver. 4.12.7			

Electrostatic Discharge

	tatio Dioona.go					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	Electrostatic Discharge Simulator	TESEQ	NSG 437	137873	2021-11-01	2022-10-31

Radiated Immunity

-		· ·····································						
	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date	
	1	Signal Generator	KEYSIGHT	N5171B	155387	2021-05-09	2022-05-08	
1/2		Power Amplifier	BONN	BLWA0810- 200/100	137597	2021-05-09	2022-05-08	
	2	Power Amplifier	AMETEK	AS102-001	155390	2021-05-09	2022-05-08	
0,		Power Amplifier	AMETEK	AS1860-100	155391	2021-05-09	2022-05-08	
	3	Power Meter	DARE	RPR2006C	138150	2021-05-09	2022-05-08	
	4 to	Isotropic Electric Field Probe	DARE	RSS1006A	137874	2021-05-09	2022-05-08	
	5	EMS Antenna	SCHWARZBECK	STLP9128D	137599	2017-06-17		
	6 EMS Antenna		SCHWARZBECK	STLP 9149	155388	2017-06-17		
	· // ·			Software				
	Item	Item Description		Manufacturer		Name	Version	
	1	Test Software for Rac	diated Immunity	Tonscend		TS+	Ver. 2.5	

Electrical Fast Transients

Licotifical Last Transicints						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMS test generator	Y TESEQ	NSG3060	137601	2021-05-09	2022-05-08
2	EMS test coupling network	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
3	EUT supply power	TESEQ	VAR3005	137606	2021-05-09	2022-05-08
4	EFT coupling clamp	TESEQ	CDN 3425	137607	2021-05-09	2022-05-08

Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMS test generator	TESEQ	NSG3060	137601	2021-05-09	2022-05-08
2	EMS test coupling network	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
3	EUT supply power	TESEQ	VAR3005	37606	2021-05-09	2022-05-08
4	Coupling Decoupling Network for surge pulses	TESEQ	CDN118	137609	2021-05-09	2022-05-08

Conducted Immunity

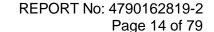
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	CI test generator	TESEQ	NSG4070	137614	2021-05-09	2022-05-08
2	Coupling and Decoupling Network	TESEQ	CDN M016	137613	2021-05-09	2022-05-08
3	6dB Attenuator	TESEQ	ATN 6050	137615	2021-05-09	2022-05-08
4	CI coupling clamp	TESEQ	KEMZ 801A	137612	2021-05-09	2022-05-08
			Software			7
Item	Descrip	otion	Manufa	cturer	Name	Version/>
1	Test Software for Co	TESEQ		NSG4070 Control Program	Ver. 1.2	

Page 12 of 79

Power Frequency Magnetic Field

	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
	1	EMS test generator	TESEQ	NSG3060	137601	2021-05-09	2022-05-08
Yn,	2	EMS test coupling network	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
	3	EUT supply power	TESEQ	VAR3005	137606	2021-05-09	2022-05-08
J.	4	Magnetic field generator	TESEQ	MFO6502	137610	2021-05-09	2022-05-08
O	5	Induction coil	TESEQ	INA 703	137611	2021-05-09	2022-05-08
	4,						

Voitage Dips and Interruptions


Page 13 of 79

6 ELECTROMAGNETIC COMPATIBILITY (EMC)

6.1 ELECTROMAGNETIC INTERFERENCE (EMI)

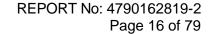
6.1.1 CONDUCTED EMISSION

Test Method:	EN 55014-1	:2017+A11:	2020					
4,	Peak for pre	-scan (9kH	z Resolutior	Bandwidth)				
Detector:	Quasi-Peak	•		•		nit		
EUT Operation:	Quaer r can		a poak mai	002 01 00	- Cart III			
Test Mode:	Made 1 to M	lada 2						
rest wode.	Mode 1 to M	loue 3		···				
Test Status:	Pre-s avera maxi Pleas	Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Please see the attached Quasi-peak and Average test results. General limits Frequency Mains ports Associated ports Frequency Disturbance voltage Disturbance current						
	(a.) Ger	neral limits					<u> </u>	
	Frequency	Mains	ports		Associat	ed ports		
	Tallye	Disturban	ce voltage	Disturban		Disturband		
	1	102	3	4	5	6 Overi neak	7	
	MHz	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμA	Average dBμA	
	0,15 to 0,50	loga	hearly with the ofthm uency from:	80	70	Decreasing lin logar of the frequ 40 to 30	ithm	
	0,50 to 5	56	46	74	64	40 10 30	30 10 20	
	5 to 30	60	50	74	64	30	20	
		The lower limit applies at the transition frequencies. The test report shall state which test method was used and which limits were applied.						
Limit:			ns port of to		.*			
	Frequency range	P ≤ 7	00 W	700 W < P 3 000 W		P > 1 000 W		
	1	2	3	4	5	6	7	
	MHz	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV	
	0,15 to 0,35	66 to 59	Decreasing lii 59 to 49	nearly with the lo	garithm of the free 63 to 53	ovency from: 76 to 69	69 to 59	
	0,35 to 5	59	49	63	53	60	59	
	5 to 30						64	
	Key	The lower limit applies at the transition frequencies. Key P = rated power of the motor only.						
	(c.) limit	ts for induc	ction cookir	ng applianc	es		10	

Frequency Appliances which are 100 V rated and without All other appliances range an earth connection The Adja International dB_uV dB_μV $dB\mu V$ dB_uV Quasi-peak Quasi-peak Average Average 0,009 to 0,050 122 110 Decreasing linearly with logarithm of Decreasing linearly with frequency from logarithm of frequency from 0,050 to 0,150 102 to 92 90 to 80 Decreasing linearly with logarithm of frequency from 72 to 62 62 to 52 56 to 46 56 56 46 60 50 60 50 The lower limit applies at the transition frequencies Receiver 80 cm AMN 12 mn 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. **Test Procedure:** 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement the EUT was placed on the horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1

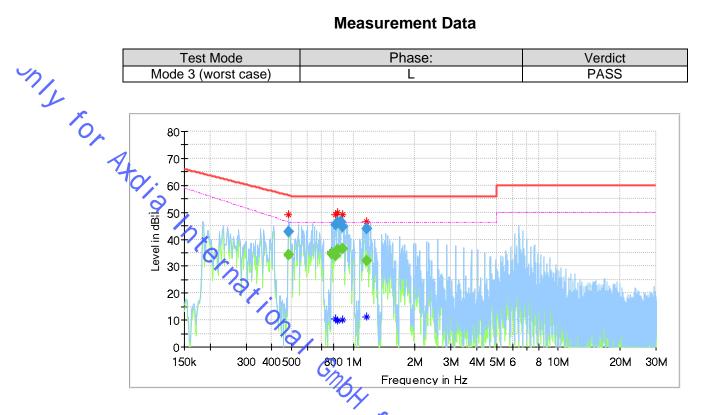
Form-ULID-008480-4 V1.0

0.8 m from the LISN 2.


and the EUT. All other units of the EUT and associated equipment was at least

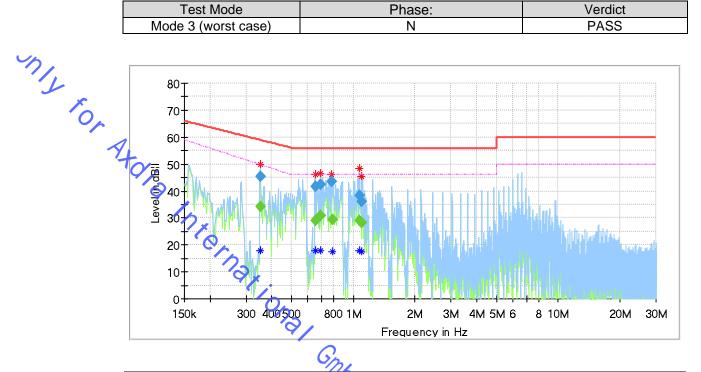
Page 15 of 79

Temperature: **21.3**℃

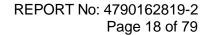

The inspection of Cernary Marker

Measurement Data

Test Mode	Phase:	Verdict
Mode 3 (worst case)	L	PASS

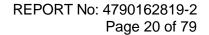


Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.482828		34.40	46.38	11.98	1000.0	9.000	L1	OFF	9.7
0.482828	42.82		56.29	13.47	1000.0	9.000	L1	OFF	9.7
0.782820		34.77	46.00	11.23	1000.0	9.000	L1	OFF	9.6
0.817148		33.96	46.00	12.04	1000.0	9.000	L1	OFF	9.6
0.817148	45.35		56.00	10.65	1000.0	9.000	L1	OFF	9.6
0.841028	46.07		56.00	9.93	1000.0	9.000	L1	OFF	9.6
0.841028		36.22	46.00	9.78	1000.0	9.000	L1	OFF	9.6
0.864908	46.57		56.00	9.43	1000.0	9,000	L1	OFF	9.7
0.890280	44.61		56.00	11.39	1000.0	9.000	L1	OFF	9.7
0.890280		36.56	46.00	9.44	1000.0	9.000	L1	OFF	9.7
1.167885		32.17	46.00	13.83	1000.0	9.000	L1	OFF	9.7
1.167885	43.97		56.00	12.03	1000.0	9.000	_L1	OFF	9.7


Germany Marker

Test Mode	Phase:	Verdict
Mode 3 (worst case)	N	PASS

Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.351488		34.17	49.81	15.63	1000.0	9.000	N	OFF	9.5
0.351488	45.56		58.93	13.37	1000.0	9.000	N	OFF	9.5
0.654465		29.00	46.00	17.00	1000.0	9.000	N	OFF	9.6
0.654465	41.71		56.00	14.29	1000.0	9.000	N	OFF	9.6
0.690285		30.97	46.00	15.03	1000.0	9.000	N	OFF	9.7
0.690285	42.28		56.00	13.72	1000.0	9.000	N	OFF	9.7
0.785805	43.70		56.00	12.30	1000,0	9.000	N	OFF	9.6
0.796253		29.53	46.00	16.47	1000.0	9.000	N	OFF	9.6
1.069380	38.50		56.00	17.50	1000.0	9.000	N	OFF	9.6
1.069380		29.16	46.00	16.84	1000.0	9.000	N	OFF	9.6
1.096245		28.22	46.00	17.78	1000.0	9,000	N	OFF	9.6
1.096245	36.22		56.00	19.78	1000.0	9.000	N	OFF	9.6
							0 pr (Serme	301
						On			


6.1.2 DISCONTINUOUS DISTURBANCES (CLICKS)

Tost Mothod	EN 55014 1-2017 - 14	1.2020		
Test Method:	EN 55014-1:2017+A1		L 1 Id 5	
Detector:	Peak for pre-scan (9k		· · · · · · · · · · · · · · · · · · ·	
F	Quasi-Peak if maximiz	zed peak within 6dE	3 of Quasi-Peak limi	t
EUT Operation:				
Test Mode:	Mode 1 to Mode 3			
4x.				oorts, Quasi-peak &
Test Status:		surements were pe k emission level we		equencies at which
	Please see the		re detected. eak and Average tes	t results
n Interna	Provision		Limit Click Rate (N	
C/L	1	All clicks < 20 ms	90 % click < 10 ms) N≤5
76	2	N ≤ 0,2	L _q b= La + 44	Clicks c ≤ 25% exceed L _q b
•	3	30 ≥ N > 0,2	L _q b= La + 20 lg(30/N)	Clicks c ≤ 25% exceed L _q b
l inside	a The limits L of Conducte	Ť		·
Limit:	which produce: 1) disturbances other than	clicks, or		
	2) clicks with a click rate N	equal to or greater than 3		
	b The relevant limit Lq for peak detector, increased b			leasurement with the quasi- see also 4.2.2.2)
	The click limit applies to the ca quarter of the number			
	click limit Lq	2		
	1			
		6		\neg
		the		a l
	· ·	0cm → ←	≥80cm	
	80cm EUT			<u> </u>
Test Setup:	1001			
				-
	40cm	LISN	SC / Op	
	or 10cm			
			<u> </u>	
			G) -
				table in shielded room,
				nce Plane (GRP), and
	•		n any of the other m	
				c and at a distance of length of 0.3m to 0.4m
Test Procedure:	parallel to the mai		was buildled will a	longin or o.om/to 0.4III
	•		pove the permitted	d limit for continuous
	interference and	their duration, spa	cing and rate were	measured during the
		-	,	limits for clicks were
			ement was perforn according to the uppe	ned. Determination of
	oomphanoc with the	no pormittod innit at	boording to the uppe	y quartilo motiloa.

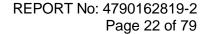
Page 19 of 79

Temperature: Humidity: **Test Environment** Test Results
NIA ARTIS INTERNATIONAL GROUP FOR the INSPECTION OF GERMAN MARKE. ATM pressure: Test Date:

6.1.3 RADIATED EMISSION

6.1.3 KADIATED EIVI	1331014			
Test Method:	EN 55014-1:2017+A11:2020	0		
EUT Operation:				
Test Status:	Pre-scan was perf measurements was perf peak emission level were	ormed at the		ted, Quasi-peak which maximum
Receive Setup:	Frequency range (MHz)	Detector	RBW	VBW
	30-1000	Quasi-peak	120kHz	300kHz
•	Frequency	L	imit(@3m)	Remark
Limit:	30MHz-230MHz		40dBuV/m	QP value
10	230MHz-1GHz		47dBuV/m	QP value
Limit:	Turntable	namber An 1m~4m Ante 3m 150 mm Figure 1. 30MH	tenna Tower	Receiver Position Controller eamplifier
Test Procedure:	 From 30 MHz to1GHz to The radiated emissions The EUT is placed on a The turntable shall be remaximum emission level EUT is set 3m away from 4m to find out the maximum procedure was EUT compliance. And also, each emission of receiving antenna both 7 Repeat above procedure complete. 	were tested in a turntable which totated for 360 cel. In the receiving num emissions. as performed on the was to be manual and the horizontal and	a semi-anechoic is 0.8m above degrees to deter antenna, which the six highest ximized by chan d vertical.	ground plane. rmine the position of is moved from 1m to emissions to ensure ging the polarization

Measurement Data:

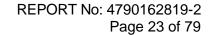

30MHz ~ 1000MHz

	Temperature:	21.2 ℃
1_	Humidity:	53.1%
*	ATM pressure:	1019 mbar
0	Test Date:	11/24/2021
	Test Mode:	Mode 4 (worst case)
	Polarization:	Horizontal

80	9													
70)												
60		0				ļ								_
50			2											
40			7	1						**	*	88	\$\$ \$\$\$	3
30	topherical physical			Ų	2			u	يناول باون					, ASSA
20	W	Hale Botton Britain	Luft, 1841 Uselal	وابتافراساردان	unidada)) High	The state of the s	AND SHAPE OF THE PERSONSE					+
10							()), ,						-
0 30N	4						100	DM -						_

IO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Levei [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	374.9978	13.88	22.31	36.19	47.00	10.81	Peak
2	475.0098	15.60	25.05	40.65	47.00	6.35	Peak
3	525.0158	15.05	25.97	41.02	47.00	5.98	Peak
4	766.3638	13.63	29.40	43.03	47.00	3.97	Peak
5	817.8734	12.66	30.08	42.74	47.00	4,26	Peak
6	851.3401	12.73	30.48	43.21	47.00	3.79	Peak
esult	Level = Read	ding Level +	Correct F	actor.			G ₂
esult Peak	Level = Read Result comp	ding Level + plies with QF	Correct F P limit, QF	Factor. PResult is de	eemed to con	nply with QI	Peak Peak Peak Peak Peak

Note: 1. Result Level = Reading Level + Correct Factor.


30MHz ~ 1000MHz

	Temperature:	21.2 ℃
Yh.	Humidity:	53.1%
1/12	ATM pressure:	1019 mbar
*	Test Date:	11/24/2021
6 .	Test Mode:	Mode 4 (worst case)
	Polarization:	Vertical
	4	
	90	

90	4	1	1			ı			,		1			
80	19/	5												
70														
60			Ž											
[m//\dBb]laval		-	0,											
lb] 40				6	X	•				2 3	4 \$ \$	5 83	 83 1,1,1,14,1,14	وولووال
	Ast, March Margaret	-									No.		A STATE OF THE PERSON.	
20	- Wheeler	AND THE PARTY OF T	angista fellate	- - - - - - - - - - - - - - - - - - -	بيباييه	A SANGE	No.	de de la	ildebelejiskéhitiskéhodál	A STATE OF THE PARTY OF THE PAR			-	
10		-												
0							1001/	Mary Comments						10
30	M — QF	P Limit Detector		PK			100M	Frequency[H:	z]					1G
	o QP	Detector						For						

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	269.9900	10.92	19.80	30.72	47.00	16.28	Peak
2	359.9620	12.42	21.96	34.38	47.00	12.62	Peak
3	374.9978	11.58	22.31	33.89	47.00	13.11	Peak
4	475.0098	12.30	25.05	37.35	47.00	9.65	Peak
5	525.0158	13.07	25.97	39.04	47.00	7.96	Peak
6	767.2369	9.61	29.40	39.01	47.00	7/99	Peak
esult Peak	Level = Read Result comp	ding Level + olies with QF	Correct F P limit, QF	actor. PResult is de	eemed to con	nply with Q	P limit.
esult Peak	Level = Read Result comp	ding Level + olies with QF	Correct F P limit, QF	Factor. P Result is de	eemed to con	nply with Q	Peak Peak Peak Peak Peak

Note: 1. Result Level = Reading Level + Correct Factor.

6.1.4 HARMONIC EMISSION

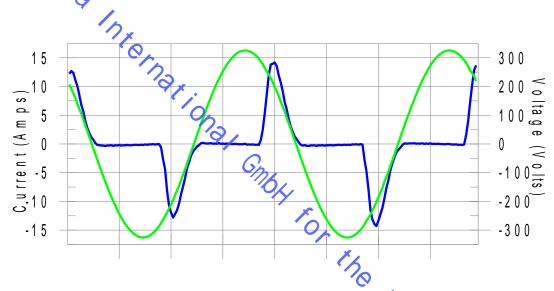
0.1.4 HARWONC LI			
Test Method:	EN IEC 61000-3-2:2	2019	
EUT Operation:			
Test Mode:	Mode 1 to Mode 3		
Class/Severity:	Class A		
Class/Severity:	Harmonic order n	Maximum permissible harmonic current A	
3		Odd harmonics	
	3	2.30	
$^{\circ}\mathcal{O}_{\mathbb{X}}$	5	1.14	
'Q'	7	0.77	
122	9	0.40	
Limits:	. 11	0.33	
` /	13	0.21	
	15≤n≤39	0.15*15/n	
	4/	Even harmonics	
	20	1.08	
	476,	0.43	
	6	0.30	
	8≤n≤40 🖊	0.23*8/n	
Test Setup:	1. Measurements ambient temper measurement the surement the surement ageing and measurement ageing and measurement the surement of the sureme	were made in a draught-free atmosphere and at an rature within the range from 20 °C to 27 °C During he temperature was not vary by more than 1 °C draw as a series of measurements is made. During assurement, lamps were installed as in normal use. The series were carried out under steady conditions. When a brought into operation or is taken out of operation, comatically, harmonic currents and power are not taken into 10s following the switching event. EUT shall not be in or more than 10% of any observation period.	

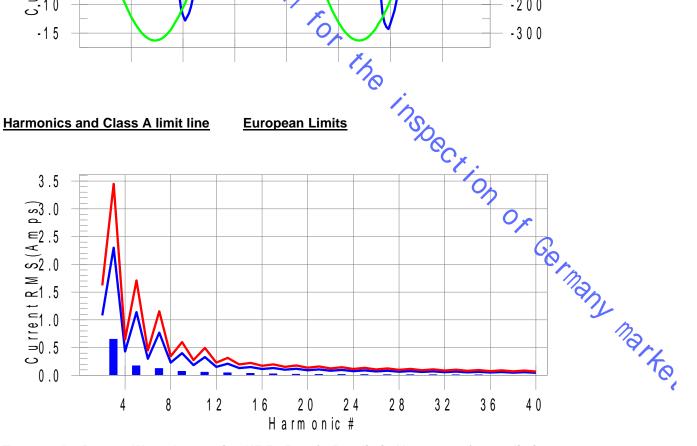
REPORT No: 4790162819-2 Page 24 of 79

70/1	For Atoria	power meter wit integrated in the 5. For each harmo current in each the measured value observation periharmonic current harmonic current	e fundamental current were measured using a digital than analogue output and frequency analyser which was a harmonic & flicker test system. Inic order, measure the 1,5 s smoothed r.m.s. harmonic DFT time window and calculate the arithmetic average of alues from the DFT time windows, over the entire iod. Each harmonic order, all 1.5 s smoothed r.m.s. In values and the average values for the individual ints, taken over the entire test observation period shall be all to the applicable limits.
		Temperature:	21.4°C
	Test Environment:	Humidity:	65.2%
		ATM pressure:	1026 mbar
	That	Test Date:	11/28/2021
		Smb _H Fo	The inspection of German Marker

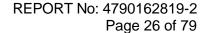
Measurement Data:

Mode 3 (worst case)


EUT: S270RR
Test category: Class-A per Ed. 4.0 (2014) (European limits)
Test date: 2021/11/28
Start time: 14:33:32
Tested by: Leon
Test Margin: 100
End time: 14:36:13


Test duration (min): 2.5 Data file name: H-000597.cts_data

Comment: Comments Customer: Customer


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Test result: Pass Worst harmonics H5-59.5% of 150% limit, H3-28.4% of 100% limit

Current Test Result Summary (Run time)

EUT: S270RR
Test category: Class-A per Ed. 4.0 (2014) (European limits)
Test date: 2021/11/28
Start time: 14:33:32
Tested by: Leon
Test Margin: 100
End time: 14:36:13

Test duration (min): 2.5 Data file name: H-000597.cts_data

Comment: Comments Customer: Customer

Test Result: Pass Source qualification: Normal

THC(A): 0.698 I-THD(%): 40.2 POHC(A): 0.043 POHC Limit(A): 0.251

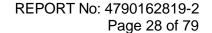
Highest parameter values during test:

 V_RMS (Volts):
 230.23
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 14.557
 I_RMS (Amps):
 5.191

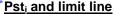
 I_Fund (Amps):
 3.441
 Crest Factor:
 6.598

 Power (Watts):
 939.5
 Power Factor:
 0.940

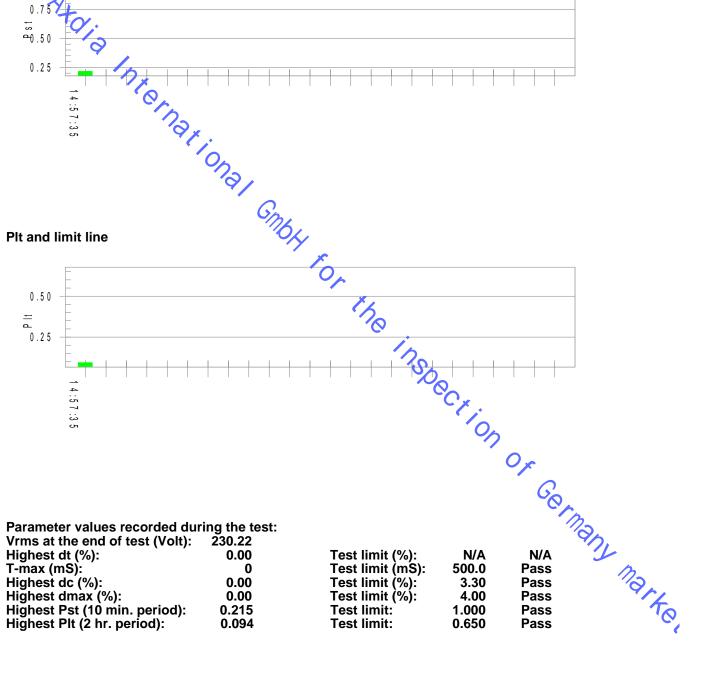

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status	
2	0.003	₫,080	N/A	0.044	1.620	N/A	Pass	
3	0.652	2.300	28.4	1.949	3.450	56.5	Pass	
3 4	0.003	0.430	N/A	0.040	0.645	N/A	Pass	
5	0.174	1.140	15.3	1.017	1.710	59.5	Pass	
5 6 7	0.002	0.300	' N/A	0.032	0.450	N/A	Pass	
7	0.125	0.770	16.3	0.527	1.155	45.7	Pass	
8	0.001	0.230	N/A	0.023	0.345	N/A	Pass	
9	0.074	0.400	18.6	0.280	0.600	46.7	Pass	
10	0.001	0.184	N/A	0.018	0.276	N/A	Pass	
11	0.059	0.330	17.8	0.167	0.495	33.7	Pass	
12	0.001	0.153	N/A	0.014	0.230	N/A	Pass	
13	0.048	0.210	22.9	0.100	0.315	31.7	Pass	
14	0.001	0.131	N/A	0.011	0.197	N/A	Pass	
15	0.038	0.150	25.2	0.061	0.225	26.9	Pass	
16	0.001	0.115	N/A	0.006	0.173	N/A	Pass	
17	0.029	0.132	21.7	0.037	. 0.198	18.6	Pass	
18	0.001	0.102	N/A	0.005	0.153	N/A	Pass	
19	0.022	0.118	18.8	0.027	(0,178	15.1	Pass	
20	0.001	0.092	N/A	0.006	0.138	N/A	Pass	
21	0.019	0.107	17.3	0.028	0.161	17.2	Pass	
22	0.001	0.084	N/A	0.006	0.125	× . N/A	Pass	
23	0.017	0.098	17.2	0.027	0.147	18.6	Pass	
24	0.001	0.077	N/A	0.004	0.115	O _A N/A	Pass	
25	0.016	0.090	17.4	0.026	0.135	19.0	Pass	
26	0.001	0.071	N/A	0.004	0.107	WA.		
27	0.014	0.083	17.0	0.020	0.125	16.0	Pass	
28	0.001	0.066	N/A	0.005	0.099	N/A	Pass	
29	0.013	0.078	17.2	0.020	0.116	17.1	Rass	
30	0.001	0.061	N/A	0.004	0.092	N/A	Pass	
31	0.013	0.073	17.9	0.018	0.109	16.9	Pass),
32	0.001	0.058	N/A	0.003	0.086	N/A	Pass	7 1
33	0.012	0.068	17.8	0.019	0.102	18.2	Pass	
34	0.001	0.054	N/A	0.002	0.081	N/A	Pass	m-
35	0.010	0.064	16.2	0.015	0.096	16.1	Pass	10
36	0.001	0.051	N/A	0.003	0.077	N/A	Pass	Marke
37	0.009	0.061	14.5	0.015	0.091	16.1	Pass	10
38	0.001	0.048	N/A	0.004	0.073	N/A	Pass	
39	0.008	0.058	13.5	0.014	0.087	16.1	Pass	•
40	0.001	0.046	N/A	0.003	0.069	N/A	Pass	

REPORT No: 4790162819-2 Page 27 of 79

6.1.5 FLICKER TEST


Test Method: EN 61000-3-3:					
LIN 01000-3-3.	2013+A1:2019				
EUT Operation:					
Test Mode: Mode 1 to Mode	Mode 1 to Mode 3				
Test items	Limits(EN61000-3-3)	Descriptions			
P _{st}	≤1.0, T _p =10min	short-term flicker indicator			
P _{lt}	≤0.65, T _p =2h	long-term flicker indicator			
Test Mode: Mode 1 to Mode Test items P _{st} P _{lt} Tmax d _c	≤3.3%	relative voltage change characteristic			
d _c	≤3.3%	relative steady-state voltage change			
Limits: d _c	≤4%(or 6% _{Note(1)} , 7% _{Note(2)})	maximum relative voltage change:			
d (t)	≤3.3%, more than 500ms	relative voltage change characteristic			
The Test v was 50 Hz 2. The voltage EUT. 3. The observe measurem — for Pst, — for Plt, The observation produces the measurem measurem produces the measu	upply voltage (open-circuit veoltage: was maintained within ±0.5 %. e fluctuations and flicker were ent, flicker simulation, or ana Tp = 10 min; Tp = 2 h. In period included that part of nost unfavorable sequence of	the whole operation cycle in which the EUT			
Temperature Humidity:	65.2%	f voltage changes.			
ATM pressu	re: 1026 mbar				
Test Date:	11/28/2021				

Measurement Data:


Test Mode	Verdict
Mode 3 (worst case)	PASS

European Limits

Plt and limit line

Parameter values recorded during the test:

vrms at the end of test (voit):	230.22	
Highest dt (%):	0.00	
T-max (mS):	0	
Highest dc (%):	0.00	
Highest dmax (%):	0.00	
Highest Pst (10 min. period):	0.215	
Highest Plt (2 hr. period):	0.094	

Test limit (%):	N/A	N/A
Test limit (mS):	500.0	Pass
Test limit (%):	3.30	Pass
Test limit (%):	4.00	Pass
Test limit:	1.000	Pass
Test limit:	0.650	Pass

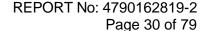
Page 29 of 79

ELECTROMAGNETIC SUSCEPTIBILITY (IMMUNITY) 6.2

According to EN 55014-2:2015 standard, the general performance criteria as following:

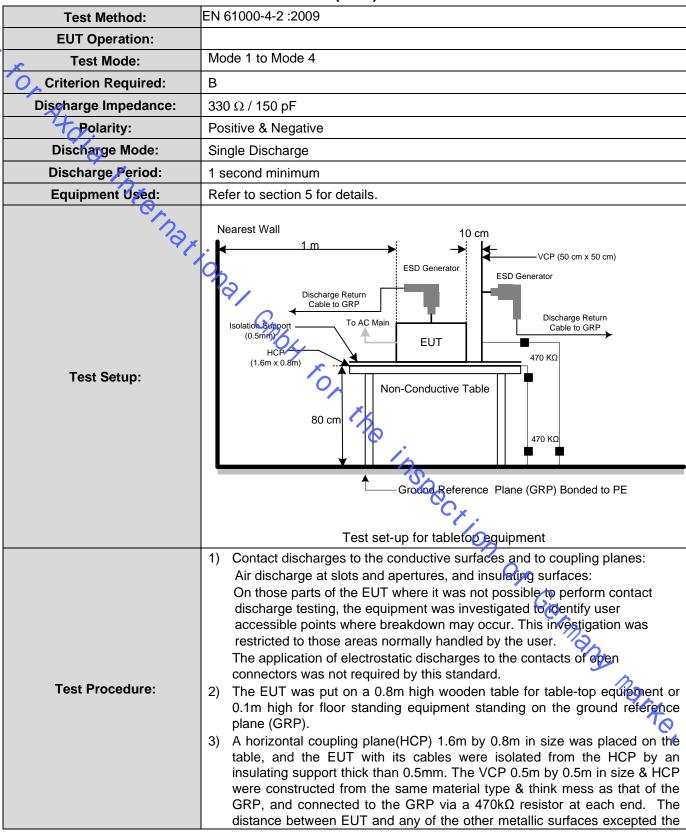
Criterion A:

The apparatus shall continue to operate as intended during the test.


No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Criterion B.

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however nomange of actual operating state or stored data is allowed to persist after the test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation,


Criterion C:

ridection of German Marker Temporary loss of function is allowed provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

6.2.1 ELECTROSTATIC DISCHARGE (ESD)

KEPOKI NO.	4790102019-2
	Page 31 of 79

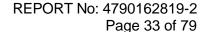
To, A.	 GRP, HCP and VCP was greater than 1m. 4) During the contact discharges, the tip of the discharge electrode was touch the EUT before the discharge switch is operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. 5) After each discharge, the ESD generator was removed from the EUT, the generator was then retriggered for a new single discharge. For ungrounded product, a discharge cable with two resistances was used after each discharge to remove remnant electrostatic voltage. 10 times of each polarity single discharge were applied to HCP and VCP.
Observations:	Test Point: 1. All insulated part of indicator lights and seams. 2. All accessible metal parts of the enclosure. 3. All sides.
Test Environment	Temperature: 21.4°C Humidity: 56.7% ATM-pressure: 1025 mbar
	Test Date: 11/28/2021 The inspection of German Marke.

REPORT No: 4790162819-2 Page 32 of 79

Test Results:

10 to 1

Direct Application	า			Test Results	
Discharge Level (kV)	Polarity (+/-)	Test Point	Test Mode	Contact Discharge	Air Discharge
8	+/-	1	Mode 1 to	N/A	Α
to 4	+/-	2	Mode 4	Α	N/A

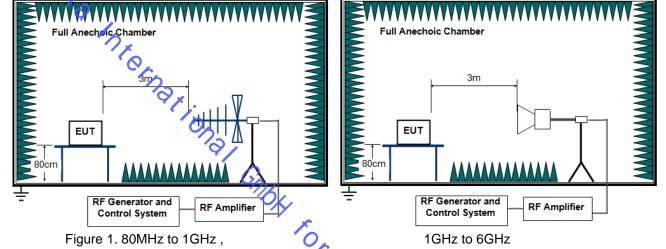

Indirect Application Test Results

Indirect Application				Test Results	
Discharge Level (kV)	Polarity (+/-)	Test Point	Test Mode	Horizontal Coupling	Vertical Coupling
4	+1	3	Mode 1 to Mode 4	А	А
79/					
Results: Pass					
A: No loss of function.					

Test phenomenon description for the EUT:

- 1. The EUT working is normal, Before the conditioning.
- 2. No any change in status of the EUT was observed, during the conditioning.
- gred, inspection of German Marke, 3. No degradation in the performance of the EUT was observed, after the conditioning.

N/A: Not Applicable (not required by Standard).



6.2.2 RADIATED IMMUNITY

Test Procedure:

V.Z.Z KADIATED IIII	WICHT I
Test Method:	EN IEC 61000-4-3:2020
EUT Operation:	
Test Mode:	Mode 1 to Mode 4
Criterion Required:	A
Test Setup:	
Full Anechoic Chamber	Full Anechoic Chamber

- For table-top equipment, the EUT was placed in the chamber on a non-conductive table 0.8m high. For arrangement of floor-standing equipment, the EUT was mounted on a non-conductive support 0.1m above the supporting plane. For human body-mounted equipment, the EUT may be tested in the same manner as table top items.
- 2) If possible, a minimum of 1 m of cable is exposed to the electromagnetic field. Excess length of cables interconnecting units of the EUT shall be bundled low-inductively in the approximate center of the cable to form a bundle 30 cm to 40 cm in length.
- 3) The EUT was initially placed with one face coincident with the calibration plane. The EUT face being illuminated was contained within the UFA (Uniform Field Area).
- 4) The frequency ranges to be considered were swept with the signal modulated and pausing to adjust the RF signal level or to switch oscillators and antennas as necessary. Where the frequency range was swept incrementally, the step size was not exceed 1% of the preceding frequency value.
- 5) The dwell time of the amplitude modulated carrier at each frequency was not be less than the time necessary for the EUT to be exercised and to respond, and was not less than 0.5s.
- 6) The test normally was performed with the generating antenna facing each side of the EUT.
- 7) The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- 8) The EUT was performed in a configuration to actual installation conditions, a video camera, test data and/or an audio monitor were used to monitor the

Page 34 of 79

	performance of	the EUT.
	Temperature:	21.1°C
Test Environment	Humidity:	54.8%
1 rest Environment	ATM pressure:	1025 mbar
100	Test Date:	11/28/2021
Atolia Internati	Ona, Gnor re	the EUT. 21.1°C 54.8% 1025 mbar 11/28/2021

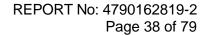
REPORT No: 4790162819-2 Page 35 of 79

Test Results:

	Level	Modulation	Dwell Time	Test Mode	Antenna Polarization	EUT Face	Result / Observations
^			20	Mode 1 to Mode 4	V	Front	Α
80MHz-	80% Am,				Н		А
10/					V	Rear	А
80MHz-					Н		А
1GHZ		80% Am, 1 % step	3s		V	Left Right	А
	1	increment			Н		А
	increa	dr.			V		А
		0/2			Н		А
3. No degrad	ation in the	performance of	tne EUT v	vas observø	d after the cond	ditioning.	

6.2.3 ELECTRICAL FAST TRANSIENTS (EFT)

0.2.3 ELLCTRICAL	TAST TRANSLATS (ELT)			
Test Method:	IEC 61000-4-4:2012, EN 61000-4-4:2012			
Test Level:	± 1.0kV on AC port ± 0.5kV on signal port			
Polarity:	Positive & Negative			
Repetition Frequency:	5 kHz			
Burst Period:	300ms			
Test Duration:	2 minutes per level & polarity			
EUT Operation:				
Test Mode:	Mode 1 to Mode 3			
Test Setup:	AC Main condition AC Main or DC Power Supplyed Reference ground condition Reference ground condition AC Main or DC Power Supplyed AE AC Main AE AC Main AE AC Main			
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1m thick and the GRP was placed on a 0.8m high wooden table for table-top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The GRP shall project beyond the EUT and the clamp by at least 0.1m on all sides. The distance between the EUT and any other of the metallic surface except the GRP was greater than 0.5m. All cables to the EUT was placed on the insulation support 0.1m above GRP. A cable not subject to EFT was routed as far as possible from cable under test to minimize the coupling between the cables. The length of signal and power cable between the EUT and EFT generator was 0.5m. If the cable is a non-detachable supply cable more than 0.5m, the excess length of this cable shall be folded to avoid a flat coil and situated at a distance of 0.1m above the GRP. The EUT was conducted the below specified test voltages for line and neutral or line, neutral and earth simultaneously (for telecommunication, single, control and DC port line with capacitive coupling clamp), 120 seconds duration. If the equipment contains identical ports, only one was tested; multicomputer cables, such as a 50-pair telecommunication cable, were tested as a single cable. Cables did not be split or divided into groups of conductors for this test; interface ports, which were intended by the manufacturer to be connected to data cables not longer than 3 m, did not be tested. 			
	not be tested. Temperature: 21.3°C			
Test Environment	Humaity. 65.2%			
	ATM pressure: 1026 mbar			
	Test Date: 11/28/2021			



REPORT No: 4790162819-2

Page 37 of 79

10 to

		Test Results	: :	
Lead under Test	Level (±kV)	Coupling Direct/Clamp	Test mode	OBSERVATIONS (PERFORMANCE CRITERION)
AC Power Port	1.0	Direct	Mode 1 to Mode 3	А
enomenon description for EUT working is normal. Being change in status of the egradation in the performa		ditioning. eserved, during the EUT was observed,	conditioning. after the condition	of German Mar

6.2.4 SURGE IMMUNITY

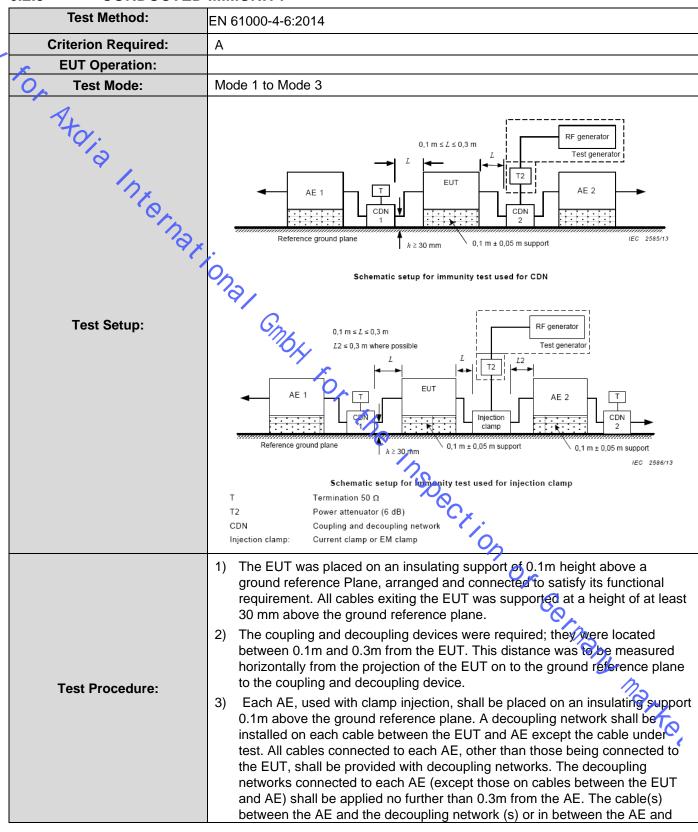
6.2.4 SURGE IMIM	ONLY
Test Method:	EN 61000-4-5:2014+A1:2017
Test Level:	± 1.0 kV Line to Line
× 1001 20 voi.	± 2.0 kV Line to Earth
Criterion Required:	В
Polarity:	Positive & Negative
Interval:	60s between each surge
No. of Surges:	5 positive at 0°, 5 negative at 90°
EUT Operation:	
Test Mode? x	Mode 1 to Mode 3
Test Setup:	AC Main or DC Power Supplyed Reference ground ed For AC port
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1 m thick and the GRP was placed on a 0.8m high wooden table for table top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The 1.2/50 µs surge was to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks were required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines and to provide sufficient decoupling impedance to the surge wave so that the specified wave may be applied on the lines under test. The power cord between the EUT and the coupling/decoupling network was not exceed 2 m in length. The interconnection line between the EUT and the coupling/ decoupling network shall not exceed 2 m in length. The EUT was conducted 0.5 kV and 1 kV test voltage for line to line and line to neutral and conducted 0.5 kV, 1 kV and 2 kV test voltage for line to earth and neutral to earth, five positive pulses and five negative pulses each at 0°, 90°, 180° and 270° for a.c. power ports and five positive pulses and five negative surge pulses for d.c. power ports (for telecommunication port, if was 0.5 kV for indoor cable longer than 10m line to ground and 0.5kV,1kV test voltage for outdoor cable line to ground, five positive pulses and five negative surge pulses), The test levels were applied on the EUT with a 2 Ω generator source impedance for power supply terminals and 40Ω output impedance for interconnection lines. The tests were done at repetition rate one per minute.

REPORT No: 4790162819-2

Page 39 of 79

21.3℃ Temperature:

The inspection of Cernary Marker



10 to

Line	り					REPORT No: 4790162 Page 40		
Se No Line (kV) Interval (deg) Mode (Performance Criterion) -5 L-N +1 60 s 90° Mode 1 to A 10 Hode 3 A ts. Pass loss of function. Henomenon description for the EUT:				Test	Results	:		
ts: Pass loss of function. henomenon description for the EUT:	Pulse No						(Performance	
loss of function. henomenon description for the EUT:	1–5	L-N	+ 1	60 s	90°		А	
loss of function. henomenon description for the EUT:	6–10	L-N	- 1	60 s	270°	Mode 3	A	
G_{α}	e EUT w any cha	· (A)	-		ng. d, during the	e conditioning.	oning.	

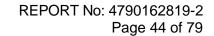
6.2.5 CONDUCTED IMMUNITY

JULY FOR HOIS

REPORT No: 4790162819-2 Page 42 of 79

i age	12 01 7
the injection clamp shall not be bundled nor wrapped and shall be I	rept

between 30mm and 50mm above the ground reference plane. The frequency range was swept from 150 kHz to 80MHz, using the signal levels established during the setting process, and with the disturbance signal 80 % amplitude modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or to change coupling devices as necessary. Where the Test Environment
Test De


Test De

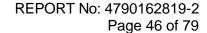
The inspection of German Marke, frequency was swept incrementally, the step size does not exceed 1% of the preceding frequency value. The dwell time of the amplitude modulated

REPORT No: 4790162819-2 Page 43 of 79

Test Results:								
Frequency	Line	Test Level	Modulation	Step Size	Dwell Time	Test Mode	Observation (Performance Criterion)	
015 MHz to 80 MHz	AC Power Port	3V r.m.s	1 kHz, 80%, Amp. Mod	1%	3s	Mode 1 to Mode 3	А	
Results: Pas	₹. ₽							
A: No loss of	function.	or the FLIT:						
1. The EUT v	working is normals	Before the o						
	ange in status of tlange in status of tlange in the perforr							
		18/						
			GM61					
			N/ F					
			Or	.				
				The same				
				1	20			
					000			
						10.		
)	2	
							Orn-	
							AN	
							-	
							1/2	
							na,	
							sermany man	

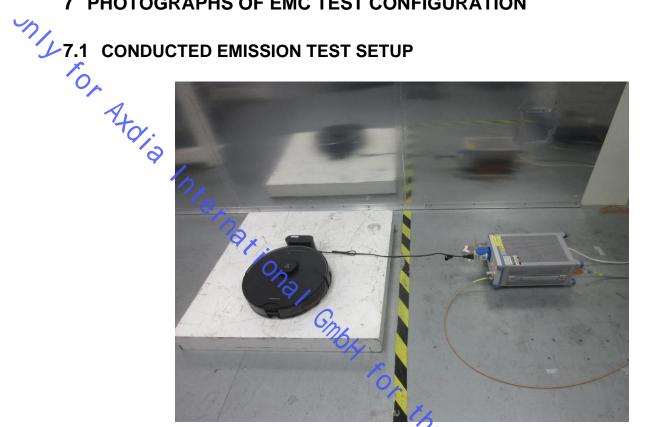
6.2.6 VOLTAGE DIPS AND INTERRUPTIONS

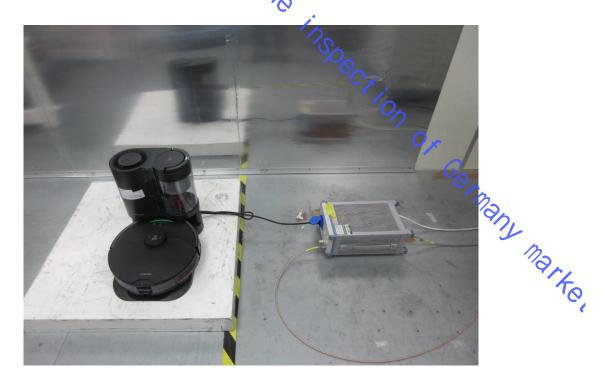
Test Method:	EN IEC 61000-4-11:2020
Test Level:	1) Voltage dip: 0 % UT voltage for 0.5 cycle; 2) Voltage dip: 40 % UT voltage for 10 cycle; 3) Voltage dip: 70 % UT voltage for 25 cycles; Note: UT is the rated voltage of the equipment under test.
No. of Dips / Interruptions:	3 per Level
EUT Operation:	
Cest Mode:	Mode 1 to Mode 3
Test Setup:	AC Main & Combination Wave & Generator EUT Port EUT & AE AC Main Reference ground & Refe
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1 m thick and the GRP was placed on a 0.8m high wooden table for table-top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The test was performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer. The EUT was tested for each selected combination of test level and duration with a sequence of three dips /interruptions with intervals of 10 s minimum. Each representative mode of operation was tested. For EUT with more than one power cord, each power cord was tested individually.
	Temperature: 21.3°C Humidity: 65.2% ATM pressure: 1026 mbar Test Date: 11/28/2021
Test Environment	Humidity: 65.2%
rest Environment	ATM pressure: 1026 mbar
	Test Date: 11/28/2021 Ox
	German Marke

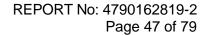


REPORT No: 4790162819-2

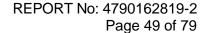
Page 45 of 79


Test Results:


Test Level % U _T	Phase	Duration of drop out in Periods	No. of drop out	Time between drop out	Test Mode	Observations (Performance Criterion)
10	0°, 180°	0.5	3	10s	Mada 4 (a	Α
40	0°, 180°	10	3	10s	Mode 1 to Mode 3	Α
70	0°, 180°	25	3	10s		А
ne EUT workin o any change i	description for the good is normal, Before the E	EUT:	ning. ed, during the devas observed, a	onditioning. Ifter the condition	ing.	

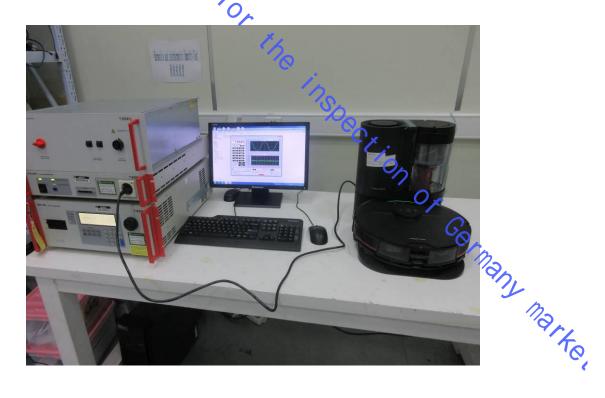


7 PHOTOGRAPHS OF EMC TEST CONFIGURATION



7.2 **RADIATED EMISSION TEST SETUP**

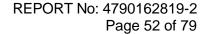
"My For Atoria 30MHz ~ 1000MHz many marker



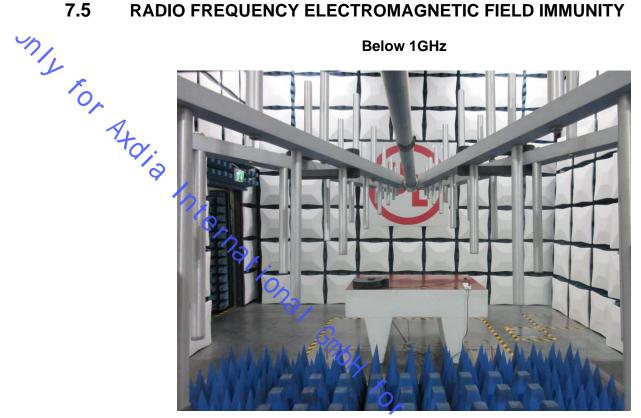
7.3 HARMONIC CURRENT & VOLTAGE FLUCTUATION AND FLICK The Atoia **MEASUREMENT**

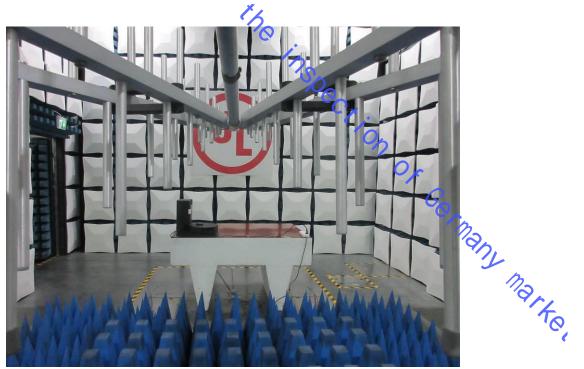
7.4 **ESD**

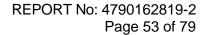
My for Atolo



My For Adria

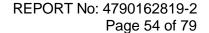

Gnort for the inspection of Germany Marker

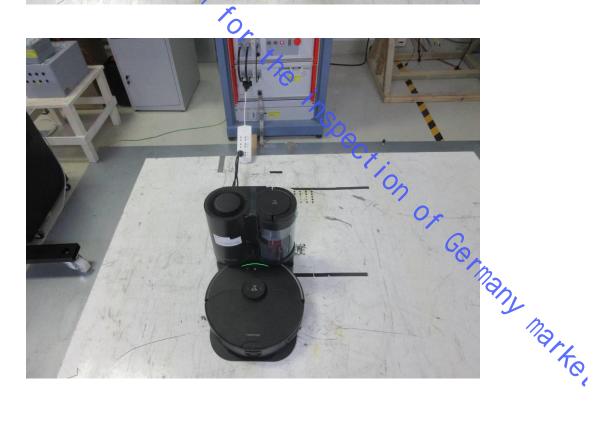




7.5 RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY

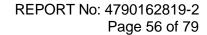
Below 1GHz



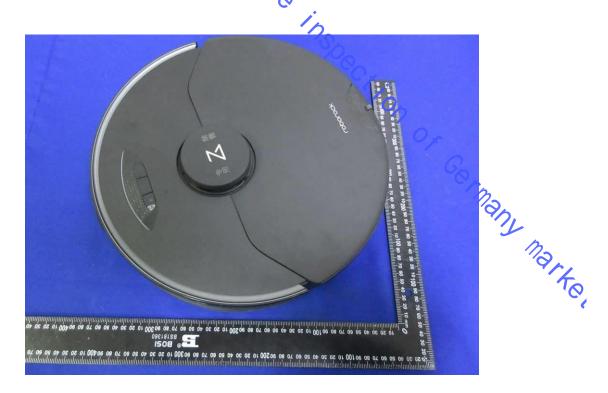

My for Atolia GnbH for the inspection of Germany marker

7.6 **ELECTRICAL FAST TRANSIENT/BURST/SURGE/DIPS**

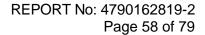
My for Adia Machinerional Groups



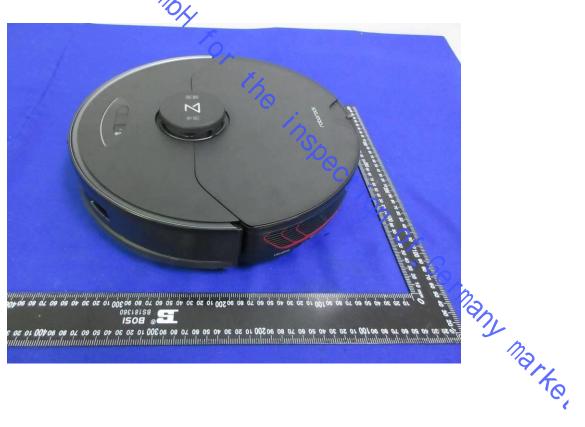
7.7 CONDUCTED IMMUNITY

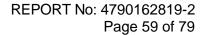


8 PHOTOGRAPHS FO THE EUT

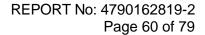


"My For Atoria

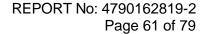




Shy for Atolia

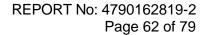


My for Atoria

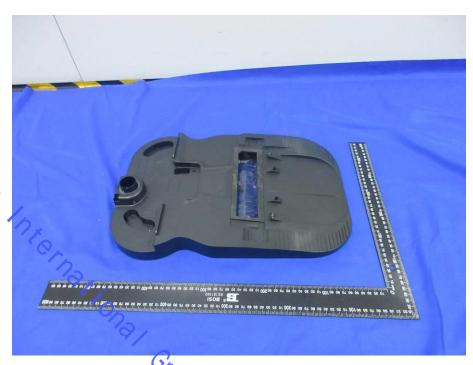


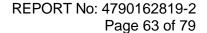
My for Atolia

pany marker



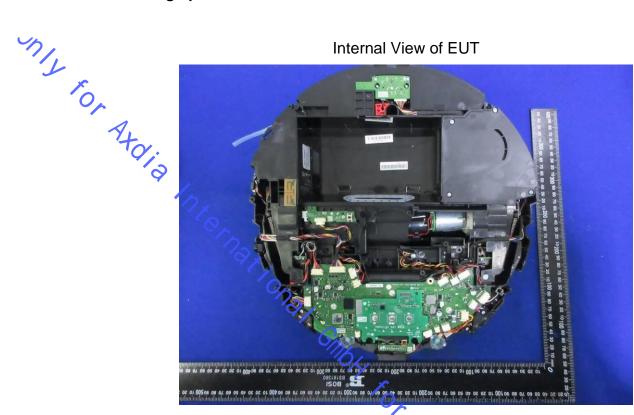
The son Atoria

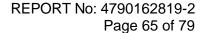




Shy for Atolia

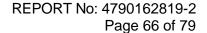
The story



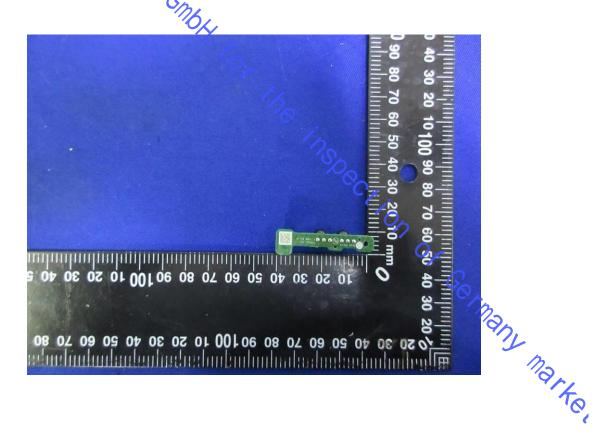


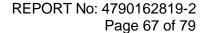
Internal Photographs

Internal View of EUT



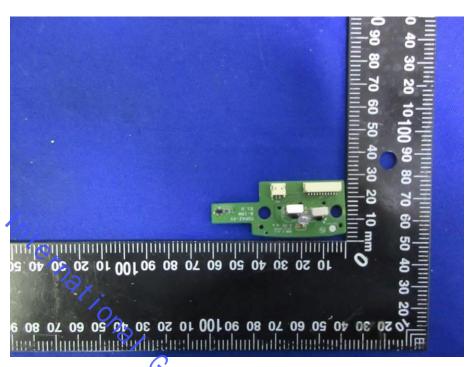
The Adia ha

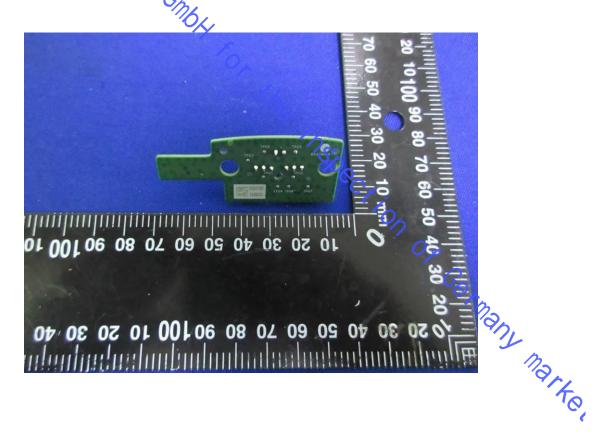

20 to 100 90 80 70 80 50 40 30 20 10 100 90 80 70 80 50 40 30 20 10 mm

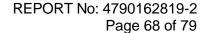

20 to 10 30 20 10 mm

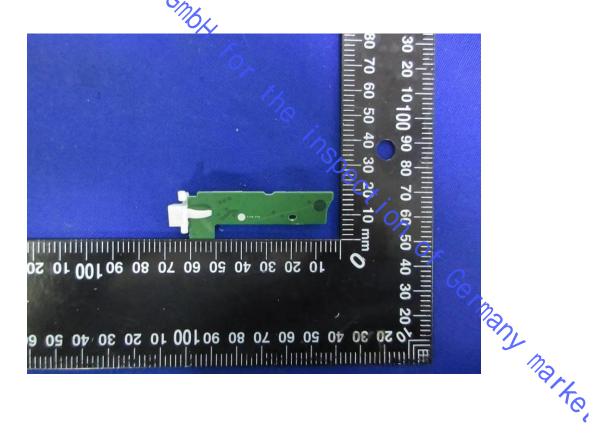
20 to 20 20 20 40 30 20 10 mm

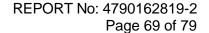
20 to 30 20 10 mm

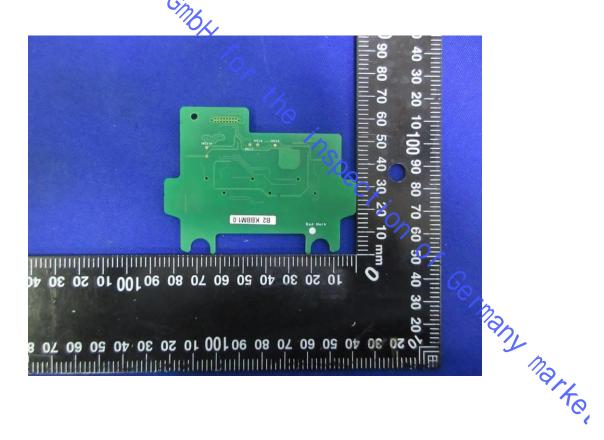

20

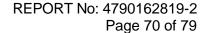


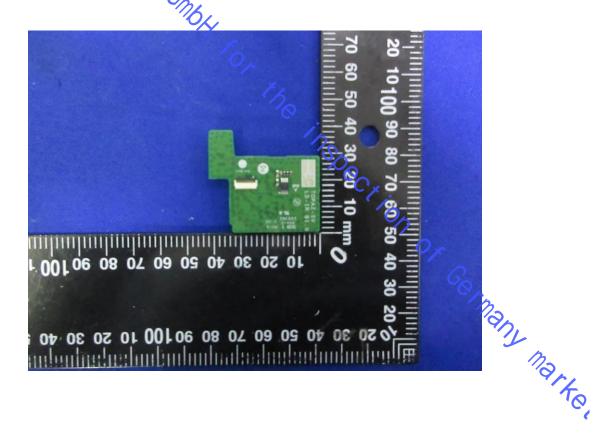


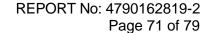

July for stalia

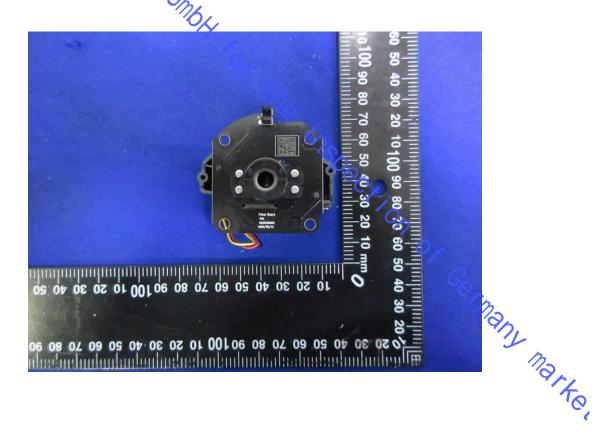


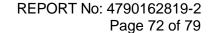


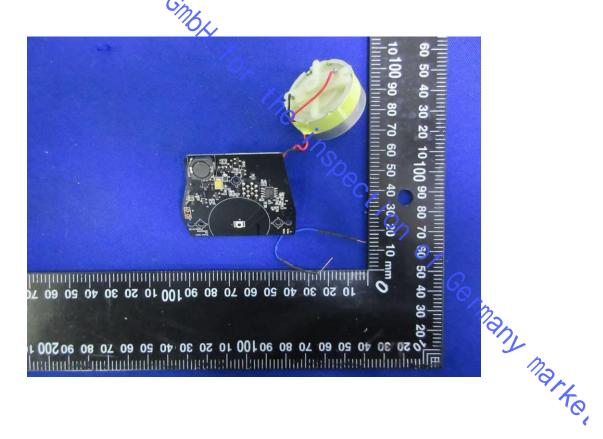


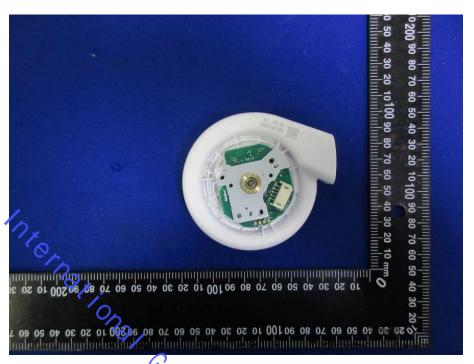


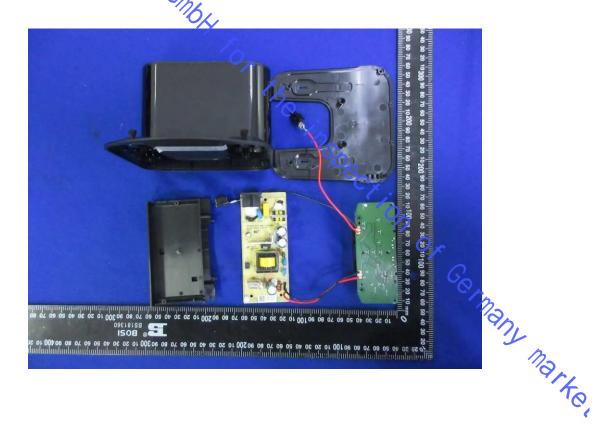


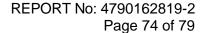




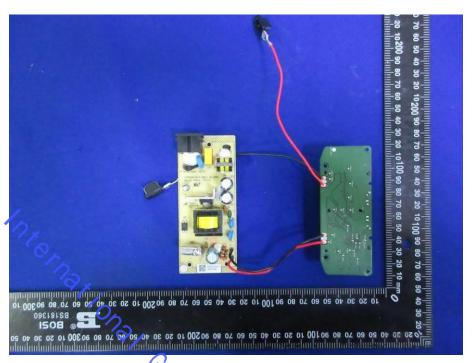


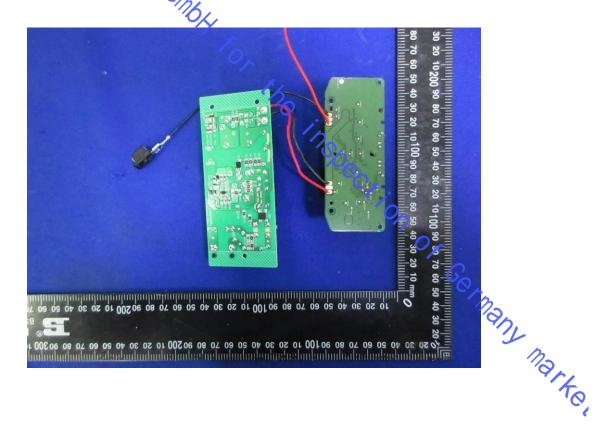


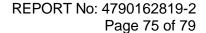

10100 90 80 70 60 50 40 30 20 10 mm o 10100 90 80 70 60 50 40 30 20 10 mm o 10100 90 80 70 60 50 40 30 20 10 mm o 10100 mm o 101000 mm o 10100 mm o 101000 mm o 10100 mm o 101000 mm o 10100 mm o 1010



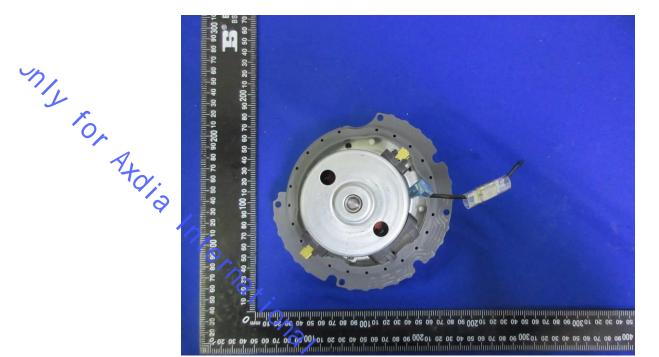
John Holia We



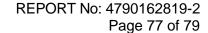


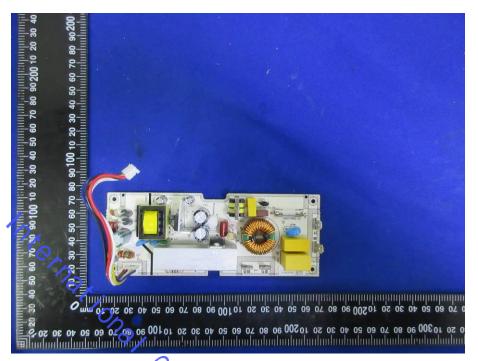


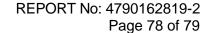
The for Atolia

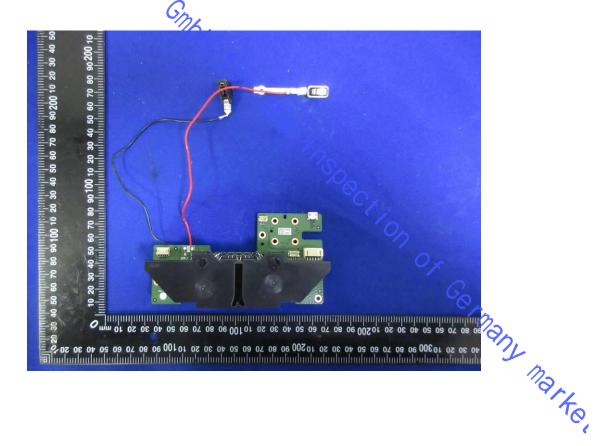


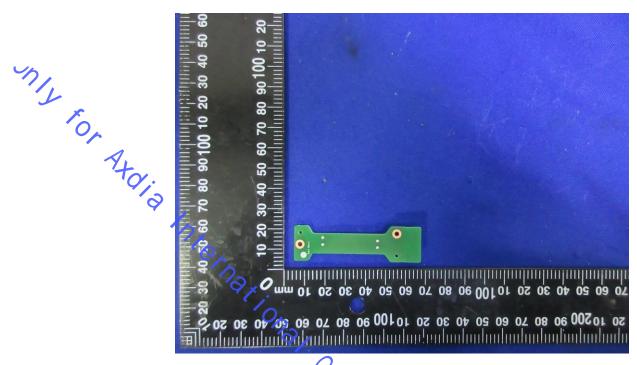
My For Atolia

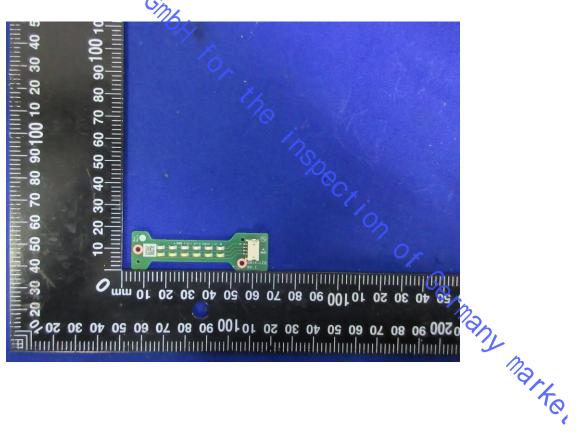







my for Atoja





END OF REPORT