

EMC TEST REPORT

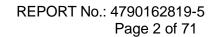
For

Robotic Vacuum Cleaner

MODEL NUMBER: S270RR

PROJECT NUMBER: 4790162819

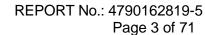
REPORT NUMBER: 4790162819-5


ISSUE DATE: Jan. 25, 2022

Prepared for

The Adia International Grand Beijing Robotock Technology Co., Ltd.

Prepared by


-CCIC Company L.
Suzhou Industrial Park,
T: +86-512-6808 6400
F: +86-512-6808 4099 **UL-CCIC Company Limited** No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China

Revision History

V _k	Rev.	Issue Date	Initial Issue Revisions Initial Issue Inspection of	Revised By
7/1	V0	01/25/2022	Initial Issue	
	5			
	0	1		
	4	to		
		9		
		1/2		
			200	
			G	
			mby.	
			C/D	
				0
				00
				Man.
				PAR
				Gernany marker
				•

Test Summary

According to the specifications of the manufacture, the EUT must complies with the following standards' requirements:

EN 55014-1:2017+A11:2020

EN 55014-2:2015

QEN IEC 61000-3-2:2019

EN 61000-3-3:2013+A1:2019

Electromagnetic Interference (EMI)

Liestoniagnetic interference (Lim)							
Test Items	Test Method	Reference Clause	Result				
Conducted Emissions at Mains Terminals (150kHz-30MHz)	EN 55014-1:2017+A11:2020	CISPR 16-2-1:2014 +A1:2017	Pass				
Disturbance Power	EN 55014-1:2017+A11:2020	CISPR 16-2-2:2010	N/A				
Radiated Emissions (30MHz- 1GHz)	EN 55014-1:2017+A11:2020	CISPR 16-2-3:2016 +A1:2019	Pass				
Discontinuous disturbances (Clicks)	55014-1:2017+A11:2020	EN 55014-1:2017 +A11:2020	N/A				
Harmonic Current Emission	EN-EC 61000-3-2:2019	EN IEC 61000-3-2:2019	Pass				
Voltage Fluctuations & Flicker	EN 61000-3-3:2013 +A1:2019	EN 61000-3-3:2013 +A1:2019	Pass				
Electromagnetic Susceptib	oility (EMS)						
ESD	EN 55014-2:2015	EN 61000-4-2:2009	PASS				
Radiated Immunity	EN 55014-2:2015	EN IEC 61000-4-3:2020	PASS				
Electrical Fast Transients (EFT)	EN 55014-2:2015	EN 61000-4-4:2012	PASS				
Surge Immunity	EN 55014-2:2015	EN 61000-4-5:2014 +A1:2017	PASS				
Conducted Immunity	EN 55014-2:2015	EN 61000-4-6:2014	PASS				
Voltage Dips and Interruptions	EN 55014-2:2015	EN IEC 61000-4-11:2020	PASS				

Remark:

- 1) N/A is an abbreviation for Not Applicable.
- 2) Pre-test with all operating ranges of voltage and frequency then choose the worst case as result.
- 3) The measurement result for the sample received is <Pass> according to < EN 55014-1:2017+A11:2020; EN 55014-2:2015; EN IEC 61000-3-2:2019; EN 61000-3-3:2013 +A1:2019> when <Accuracy Method> decision rule is applied.

CONTENTS

1	ATTES	STATION OF TEST RESULTS	5
2	TEST I	METHODOLOGY	6
3	- FACILI	ITIES AND ACCREDITATION	6
	0		_
4	CALIB	RATION AND UNCERTAINTY	7
		MEASURING INSTRUMENT CALIBRATION	
	4.2	MEASUREMENT UNCERTAINTY	7
5	EQUIP	MEN7 UNDER TEST	8
	5.1	DESCRIPTION FOR THE EUT	8
	5.2	TEST MODE	8
	5.3	DESCRIPTION OF TEST SETUP	
	5.4	MEASURING INSTRUMENT AND SOFTWARE USED	
6	EI ECT	ROMAGNETIC COMPATIBILITY (EMC)	12
U		ELECTROMAGNETIC INTERFERENCE (EMI)	
	<i>6.1</i> 6.1.1	CONDUCTED EMISSION	
	6.1.2	DISCONTINUOUS DISTURBANCES (CLICKS)	18
	6.1.3	RADIATED EMISSION	20
	6.1.4 6.1.5	RADIATED EMISSION	23 27
	6.2	ELECTROMAGNETIC SUSCEPTIBILITY (MMUNITY)	
	6.2.1	ELECTROSTATIC DISCHARGE (ESD)	30
	6.2.2	RADIATED IMMUNITY	33
	6.2.3 6.2.4	ELECTRICAL FAST TRANSIENTS (EFT)	36
	6.2.4	CONDUCTED IMMUNITY	42
	6.2.6	ELECTROSTATIC DISCHARGE (ESD) RADIATED IMMUNITY ELECTRICAL FAST TRANSIENTS (EFT) SURGE IMMUNITY CONDUCTED IMMUNITY VOLTAGE DIPS AND INTERRUPTIONS	45
7	РНОТО	OGRAPHS OF EMC TEST CONFIGURATION	
	7.1	CONDUCTED EMISSION TEST SETUP	47
	7.2	RADIATED EMISSION TEST SETUP	48
	7.3	HARMONIC CURRENT & VOLTAGE FLUCTUATION AND FLICK MEASUREMENT	49
	7.4	ESD	49
	7.5	RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY	51
	7.6	ELECTRICAL FAST TRANSIENT/BURST/SURGE/DIPS	1 32
	7.7	CONDUCTED IMMUNITY	52
8	РНОТО	OGRAPHS FO THE EUT	53

Page 5 of 71

1 ATTESTATION OF TEST RESULTS

Applicant Information	1
Company Name:	

Beijing Roborock Technology Co., Ltd.

Address:

Floor 6, Suite 6016, 6017, 6018, Building C, Kangjian Baosheng Plaza, No. 8 Heiquan Road, Haidian District, 100192 Beijing,

P.R. China

Manufacturer Information

Company Name:

Beijing Roborock Technology Co., Ltd.

Floor 6, Suite 6016, 6017, 6018, Building C, Kangjian Baosheng Address:

Plaza, No. 8 Heiguan Road, Haidian District, 100192 Beijing,

P.R. China

EUT Description

Product Name:

Model Number: S270RR

Sample Number:

Data of Receipt Sample: Date Tested:

Robotic Vacuum Cleaner

4401433, 4574370

Jan. 11, 2022 Jan. 11, 2022~ Jan. 24, 2022

4					
APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
EN 55014-1:2017+A11:2020 EN 55014-2:2015 EN IEC 61000-3-2:2019 EN 61000-3-3:2013+A1:2019	PASS				

Prepared By:	Reviewed By:
Leon Wu	Tom Tang
Leon Wu	Tom Tang
Authorized By:	Germany Mark
Chris Zhong	As the second se
Chris Zhong Laboratory Leader	

Page 6 of 71

2 TEST METHODOLOGY

All tests were performed in accordance with the procedures documented EN 55014-1:2017+A11:2020, EN 55014-2:2015, EN IEC 61000-3-2:2019 and EN 61000-3-3:2013+A1:2019.

The state of the s							
	Test Location UL-CCIC Company Limited						
	Address	No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China					
	Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.					

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

of Germany Marker

Page 7 of 71

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in standards

MEASUREMENT UNCERTAINTY 4.2

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus

Test Item	Frequency Range	Measurement Uncertainty	U _{cispr}
Conducted Emission at mains port using AMN	9kHz-150kHz	2.9 dB	3.8 dB
Conducted Emission at mains port using AMN	150kHz-30MHz	3.1 dB	3.4 dB
Conducted Emission at telecommunication port using AAN	150kHz-30MHz	3.5 dB	5.0 dB
Radiated Emission	30MHz-1000MHz	≯ ∠ 2.5 dB	6.3 dB
Radiated Emission	1GHz-18GHz	3.3 dB	5.2 dB (1GHz-6GHz) 5.5 dB (6GHz-18GHz)

Remark:

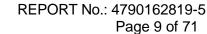
AMN - Artificial Mains Network

VP - Voltage Probe

ANN – Asymmetric Artificial Network

at a, Of Germany Marke, Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT No.: 4790162819-5 Page 8 of 71


EQUIPMENT UNDER TEST

DESCRIPTION FOR THE EUT

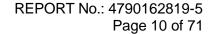
5.1		N FOR THE EUT
<i>y</i>	Product Name:	Robotic Vacuum Cleaner
10	Model No.:	S270RR
	Description of EUT:	The EUT is a vacuum cleaner which contains a 2.4GHz band WiFi module. It can be used with empty wash fill dock
	Max operating frequency	>108MHz
	Test voltage:	AC 230V/50Hz
	Rated Input:	20VDC, 1.2A
	170	
5.2	TEST MODE	· O _D
	Mode 1 Keen FLIT	Charging via empty wash fill dock

5.2 **TEST MODE**

_		······································
	Mode 1	Keep EUT Charging via empty wash fill dock
	Mode 2	Keep EUT working in dust collection condition with empty wash fill dock
	Mode 3	Keep EUT working in mop washing condition with empty wash fill dock
	Mode 4	Keep EUT working normally
		Reep EUT working normally for the inspection of German Marker
		20
		\mathcal{T}_{∞}

5.3 **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT


X							
Item Equipment		Brand Na	me Mod	Model Name Des		scription	
1	1	/		/		/	
O POR							
Ca	ble No Port	Connector Type	Cable Type	Cable Ler	nath(cm)	Remarks	

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(cm)	Remarks
1	AC power cable	3 pin	/	180	N/A

ACCESSORY

	1	cab	le 3	pin	/	180	N/A
c	ESSOF		Onal)			
	Item	Accessory	Brand Name	Mode	l Name	Description	
	1	Empty Wash Fill Dock	roborock	EWFL	001HRR	Rated Input (Dust Co 220-240VAC,50-60 Rated input(char 220-240VAC,50-60H Rated Output: 20V D	Hz, 5A ge):
						Rated Output: 20V D	many marker

5.4 **MEASURING INSTRUMENT AND SOFTWARE USED**

Conducted Emission

3.4	3.4 MEASSKINS INSTRUMENT AND SOFTWARE GOLD								
Yh, (Conduc	ted Emission							
1/2	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date		
1	1	EMI Test Receiver	R&S	ESR3	126700	2021-12-04	2022-12-03		
0	2	LISN	R&S	ENV216	126701	2021-12-04	2022-12-03		
	73	LISN	AFJ Instruments	LS16C-10	127010	2021-12-04	2022-12-03		
	4/	; み		Software					
	Item	Item Description			cturer	Name	Version		
	1	Test Software fo		R&S		EMC32	Ver. 9.25		

Radiated Emission 2

Radiated	diated Emission V										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date					
1	EMI test receiver	R&S	ESR26	126703	2021-12-04	2022-12-03					
2	Horn Antenna R&S		JB1	177821	2019-01-28	2022-01-27					
4			HF907	126705	2019-01-26	2022-01-25					
5			SCU-18D	134667	2021-12-04	2022-12-03					
Software											
Item	Descri	Manufa	cturer	Name	Version						
1	Test Software Disturb	Tonso	end	TS+	Ver. 2.5						

Harmonic &Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date		
1	Single phase Harmonic & Flicker test system	TESEQ	5001IX- CTS-400- SCH	126719	2021-12-04	2022-12-03		
2	Power Source TESEQ		5001IX-400- 413-SCH	137616	2021-06-07	2022-06-05		
	Software							
Item	Descrip	Manufa	cturer	Name	Version			
1	Test Software for Hai Flicker an	TESEQ		Win2001	Ver. 4.12.7			

Electrostatic Discharge

•		tatio bioonai go					· · · · · · · · · · · · · · · · · · ·
	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
	1	Electrostatic Discharge Simulator	TESEQ	NSG 437	137873	2021-11-01	2022-10-31

Page 11 of 71

Radiated Immunity

	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date			
	1	Signal Generator	KEYSIGHT	N5171B	155387	2021-05-09	2022-05-08			
1/2	2	Power Amplifier	BONN	BLWA0810- 200/100	137597	2021-05-09	2022-05-08			
		Power Amplifier	AMETEK	AS102-001	155390	2021-05-09	2022-05-08			
6 ,		Power Amplifier	AMETEK	AS1860-100	155391	2021-05-09	2022-05-08			
	3	Power Meter	DARE	RPR2006C	138150	2021-05-09	2022-05-08			
740		Isotropic Electric Field Probe	DARE	RSS1006A	137874	2021-05-09	2022-05-08			
	5	EMS Antenna	SCHWARZBECK	STLP9128D	137599	2017-06-17				
	6	EMS Antenna	SCHWARZBECK	STLP 9149	155388	2017-06-17				
	' D _*					Software				
	Item	Descri	Description			Name	Version			
	1	Test Software for Rac	diated Immunity	Tonsce	end	TS+	Ver. 2.5			

Electrical Fast Transients

Licotiio						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMS test generator	TESEQ	NSG3060	137601	2021-05-09	2022-05-08
2	EMS test coupling network	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
3	EUT supply power	TESEQ	VAR3005	137606	2021-05-09	2022-05-08
4	EFT coupling clamp	TESEQ	CDN 3425	137607	2021-05-09	2022-05-08

Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMS test generator	g		137601	2021-05-09	2022-05-08
2	EMS test coupling network TESEQ		CDN3061	137605	2021-05-09	2022-05-08
3	EUT supply power	TESEQ	VAR3005	37606	2021-05-09	2022-05-08
4	Coupling Decoupling Network for surge pulses	TESEQ	CDN118	137609	2021-05-09	2022-05-08

Conducted Immunity

1 CI test generator Coupling and Decoupling	TESEQ	NSG4070	137614	2021-05-09	2022-05-08
. •					
Network	Decoupling TESEQ Network		CDN M016 137613		2022-05-08
3 6dB Attenuator	6dB Attenuator TESEQ		137615	2021-05-09	2022-05-08
4 CI coupling clamp	CI coupling clamp TESEQ		137612	2021-05-09	2022-05-08
		Software			4
Item Description		Manufa	cturer	Name	Version/>
Test Software for Conduct	Test Software for Conducted Immunity			NSG4070 Control Program	Ver. 1.2

Page 12 of 71

Power Frequency Magnetic Field

	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
	1	EMS test generator	TESEQ	NSG3060	137601	2021-05-09	2022-05-08
Yn,	2	EMS test coupling network	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
	3	EUT supply power	TESEQ	VAR3005	137606	2021-05-09	2022-05-08
J. F.	4	Magnetic field generator	TESEQ	MFO6502	137610	2021-05-09	2022-05-08
O	5	Induction coil	TESEQ	INA 703	137611	2021-05-09	2022-05-08
	4,						

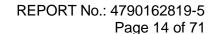
Voltage Dips and Interruptions

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	MS test generator	TESEQ	NSG3060	137601	2021-05-09	2022-05-08
2	EMS test coupling petwork	TESEQ	CDN3061	137605	2021-05-09	2022-05-08
3	EUT supply power	TESEQ	VAR3005	137606	2021-05-09	2022-05-08

Sen.

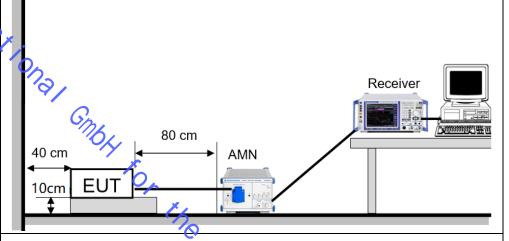
St coupling gen.

St cou


Page 13 of 71

6 ELECTROMAGNETIC COMPATIBILITY (EMC)

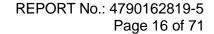
6.1 ELECTROMAGNETIC INTERFERENCE (EMI)


6.1.1 CONDUCTED EMISSION

Test Method:	EN 55014-1	:2017+A11:	2020						
4,	Peak for pre	-scan (9kH	z Resolutior	Bandwidth)					
Detector:	Quasi-Peak	•		•		nit			
EUT Operation:	Quadi i dan		a poak mai	002 01 00	- Cart III				
Test Mode:	Mode 1 to M	lodo 2							
rest wode:	Wode I to IV	loue 3		···					
Test Status:	avera maxi	scan was page measu mum peak see see the a	erformed warements was remission leventsched Quentsched Quentsched Quentsched war	ith peak det ere perform rel were dete asi-peak and	ed at the fected.	requencies	•		
	(a.) Ger	neral limits							
	Frequency	Mains ports			Associat	ed ports			
	range	Disturban	ce voltage	Disturban		Disturband			
	1	102	3	4	5	6	7		
	MHz	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμA	Average dBμA		
	0,15 to 0,50	loga	hearly with the of the uency from:	80	70	Decreasing lin logar of the frequ 40 to 30	ithm		
	0,50 to 5	56	46	74	64	40 10 30	30 10 20		
	5 to 30	60	50	74	64	30	20		
	The lower limit applies at the transition frequencies. The test report shall state which test method was used and which limits were applied.								
Limit:		(b.) Limits for mains port of tools							
	Frequency range	P ≤ 7	00 W	700 W < P	€9000 W	P > 1 (00 W		
	1	2	3	4	5	6	7		
	MHz	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV	Quasi-peak dBμV	Average dBμV		
	0,15 to 0,35	66 to 59	Decreasing lii 59 to 49	nearly with the lo	garithm of the free	ouency from: 76 to 69	69 to 59		
	0,35 to 5	59	49	63	53	690	59		
	5 to 30	64	54	68	58	74	64		
	Key	applies at the tr	ansition frequen	cies.			Mary		
	(c.) limit	ts for induc	ction cookir	ng applianc	es		101		

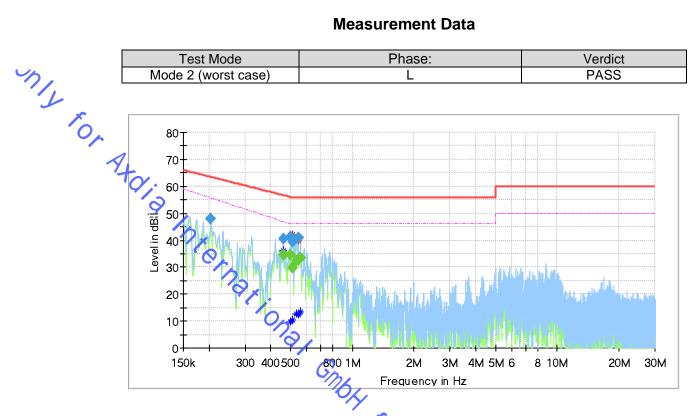
Frequency Appliances which are 100 V rated and without All other appliances range an earth connection My for Adria International dB_uV dB_μV dBμV dB_uV Quasi-peak Average Quasi-peak Average 122 110 Decreasing linearly with logarithm of Decreasing linearly with frequency from logarithm of frequency from 102 to 92 90 to 80 Decreasing linearly with logarithm of frequency from 72 to 62 62 to 52 56 to 46 56 56 46 60 50 60 50 The lower limit applies at the transition frequencies

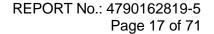
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.


Test Procedure:

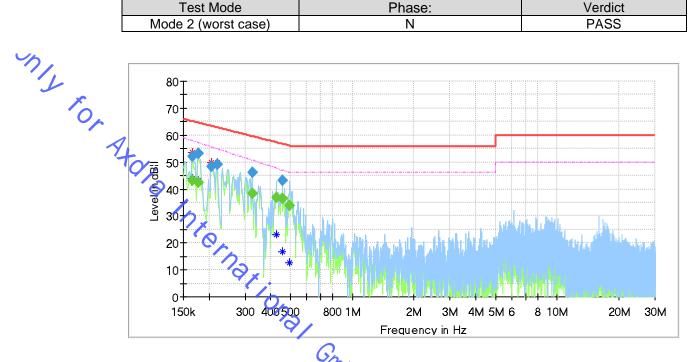
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement the EUT was placed on the horizontal ground reference plane above 10cm with insulating
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

Page 15 of 71


The inspection of Cernary Marker Temperature: 18.5℃


Measurement Data

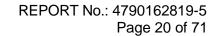
Test Mode	Phase:	Verdict
Mode 2 (worst case)	L	PASS


Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.203730	47.89		63.46	15.57	1000.0	9.000	L1	OFF	9.5
0.460440		34.61	46.89	12.28	1000.0	9.000	L1	OFF	9.7
0.461933	40.62		56.66	16.04	1000.0	9.000	L1	OFF	9.7
0.502230		34.78	46.00	11.22	1000.0	9.000	L1	OFF	9.7
0.502230	41.43		56.00	14.57	1000.0	9.000	L1	OFF	9.7
0.511185	39.27		56.00	16.73	1000.0	9.000	L1	OFF	9.7
0.511185		29.94	46.00	16.06	1000.0	9.000	L1	OFF	9.7
0.524618	40.01		56.00	15.99	1000.0	9,000	L1	OFF	9.6
0.532080		32.41	46.00	13.59	1000.0	9.000	L1	OFF	9.6
0.545513		32.63	46.00	13.37	1000.0	9.000	L1	OFF	9.6
0.545513	40.86		56.00	15.14	1000.0	9.000	L1	OFF	9.6
0.558945		33.54	46.00	12.46	1000.0	9.000	_L1	OFF	9.5

Germany Marker

Test Mode	Phase:	Verdict
Mode 2 (worst case)	N	PASS

Page 18 of 71


6.1.2 DISCONTINUOUS DISTURBANCES (CLICKS)

Test Method:	EN 55014-1:2017+A11:2020								
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-Peak if maximized peak within 6dB of Quasi-Peak limit								
Detector.	Quasi-Peak if maximiz	t							
EUT Operation:	Mode 1 to Mode 3								
Test Mode:	Mode 1 to Mode 3								
Test Status:	Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected. Please see the attached Quasi-peak and Average test results.								
n torna	Provision		Limit Click Rate (N)					
	1	All clicks < 20 ms	90 % click < 10 ms	N≤5					
4	2	N ≤ 0,2	L _q b= La + 44	Clicks ^c ≤ 25% exceed L _q ^b					
	3	30 ≥ N > 0,2	L _q b= La + 20 lg(30/N)	Clicks c ≤ 25% exceed Lq b					
Limit:	a The limits L of Conducte which produce: 1) disturbances other than 2) clicks with a dick rate N b The relevant limit Lq for peak detector, increased by The click limit applies to the c a quarter of the number click limit Lq	clicks, or equal to or greater than 3 continuous disturbance, y a certain value determir e disturbance assessed a	30 as given in 4.1.1 for the m ned from the click rate N (s ccording to the upper qua	neasurement with the quasi- see also 4.2.2.2) rtile method					
Test Setup:	80cm EUT 40cm or 10cm	LISN LISN	≥80cm						
Test Procedure:	the ground of sh keeps a distance of the EUT was concern to the main and the parallel to the main and the servation time. Calculated and a servation of the servation time.	ielded room used of at least 0.8m from nnected to an artifexcess lead of EUT n lead. counted clicks altheir duration, spa When relevant, par second measure	as Ground Referent any of the other many of the	d limit for continuous e measured during the limits for clicks were ned. Determination of					

Page 19 of 71

Temperature: / Humidity: **Test Environment** Test Results
NIA ARTIS INTERNATIONAL GROUP FOR the INSPECTION OF GERMAN MARKE. ATM pressure: Test Date:

6 1 3 RADIATED EMISSION

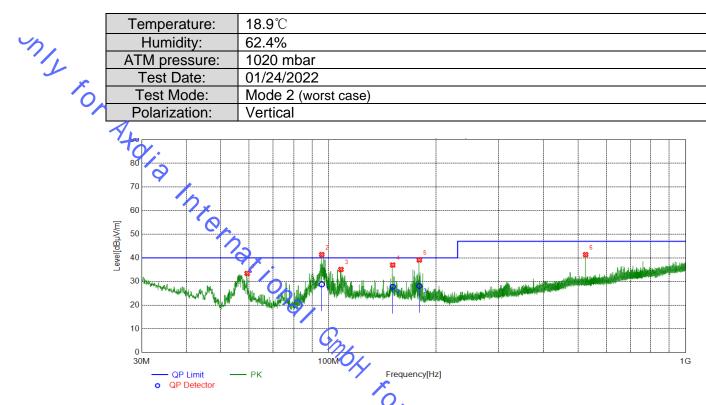
6.1.3 RADIATED EM	ISSIUN			
Test Method:	EN 55014-1:2017+A11:2020)		
EUT Operation:				
Test Status:	Pre-scan was per measurements was perf peak emission level were	ormed at the		
Receive Setup:	Frequency range (MHz)	Detector	RBW	VBW
	30-1000	Quasi-peak	120kHz	300kHz
9	Frequency	L	imit(@3m)	Remark
Limit:	30MHz-230MHz		40dBuV/m	QP value
170	230MHz-1GHz		47dBuV/m	QP value
Limit:	Turntable	1m~4m Ante	z to 1GHz	Receiver Position Controller reamplifier
Test Procedure:	 From 30 MHz to1GHz to The radiated emissions The EUT is placed on a The turntable shall be remaximum emission level EUT is set 3m away from 4m to find out the maximum procedure was EUT compliance. And also, each emission of receiving antenna both 7 Repeat above procedure complete. 	were tested in a turntable which otated for 360 cel. In the receiving num emissions. as performed on the was to be maith horizontal and	a semi-anechoic in is 0.8m above degrees to deter antenna, which in the six highest ximized by chan d vertical.	ground plane. rmine the position of is moved from 1m to emissions to ensure ging the polarization

Measurement Data:

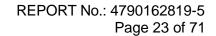
30MHz ~ 1000MHz

Yh.	Temperature:	18.9℃
1/1-	Humidity:	62.4%
*	ATM pressure:	1020 mbar
0.	Test Date:	01/24/2022
	Test Mode:	Mode 2 (worst case)
	Polarization:	Horizontal

80	9													
70)						<u> </u>						
60)	0			-			-						
50)		3	(+		. 4		5		
50 40			•	0,			\$ \$\$			*	المدارات	\$.) (L)	
30	WILLIAM WARRANT	Magagara		6	2/1	ly.			بخالفها بالس					
10			e od orac probably a		na istali	G	2							
0							64							_
30	0М	Limit Detector		DIC		100	0M Frequency[⊔ -1						


VO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	
1	112.5511	17.48	19.08	36.56	40,00	3.44	Peak	
2	171.9666	7.37	18.25	25.62	40,00	14.38	QP	
3	178.4659	8.77	17.95	26.72	40.00	13.28	QP	
4	423.2577	19.53	23.60	43.13	47.00	3.87	Peak	
5	630.9450	14.61	27.23	41.84	47.00	5,16	Peak	
6	775.5793	12.23	29.53	41.76	47.00	5.24	Peak	
: !esult	Level = Read	ding Level +	Correct F	actor.			C.	
Result f Peak	Level = Read Result comp	ding Level + plies with QF	Correct F P limit, QF	Factor. PResult is de	eemed to cor	nply with Q	Peak Peak Peak Peak	79.

Note: 1. Result Level = Reading Level + Correct Factor.


30MHz ~ 1000MHz

Temperature:	18.9℃
Humidity:	62.4%
ATM pressure:	1020 mbar
Test Date:	01/24/2022
Test Mode:	Mode 2 (worst case)
Polarization:	Vertical

NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Detector	
1	59.2470	19.37	14.07	33.44	40.00	6.56	Peak	
2	95.8178	12.93	15.85	28.78	40,00	11.22	QP	
3	108.4284	16.76	18.35	35.11	40.00	4.89	Peak	
4	151.3531	8.51	19.29	27.80	40.00	1 2.20	QP	
5	179.7270	10.26	17.89	28.15	40.00	11.85	QP	
	505 0450	15 10	25 97	41 39	47 00	561	Peak	
6 esult Peak	Level = Read Result comp	ding Level + plies with QF	Correct F P limit, QF	actor. PResult is de	eemed to con	nply with Q	P limit.	
6 esult Peak	525.0158 Level = Read Result com	ding Level + plies with QF	Correct F P limit, QF	actor. PResult is de	eemed to con	nply with Q	Peak QP QP Peak Plimit.	

Note: 1. Result Level = Reading Level + Correct Factor.

6.1.4 HARMONIC EMISSION

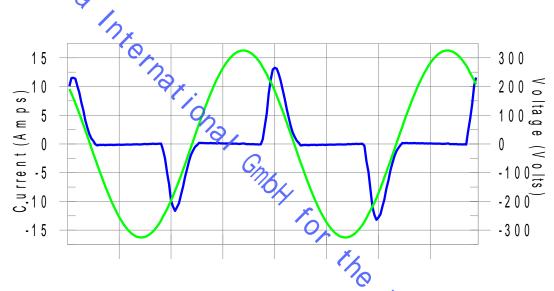
0.1.4 HARWONC LI		
Test Method:	EN IEC 61000-3-2:2	2019
EUT Operation:		
Test Mode:	Mode 1 to Mode 3	
Class/Severity:	Class A	
Class/Severity:	Harmonic order n	Maximum permissible harmonic current A
8		Odd harmonics
· /.	3	2.30
$^{\circ}\mathcal{O}_{\mathbb{X}}$	5	1.14
' Ø*	7	0.77
122	9	0.40
Limits:	. 11	0.33
•	13	0.21
	15≤n≤39	0.15*15/n
	9/	Even harmonics
	30	1.08
	4/6/	0.43
	6	0.30
	8≤n≤40 🖊	0.23*8/n
Test Setup:	 Measurements ambient temper measurement the surement the surement ageing and measurement ageing and measurement piece of EUT is manually or autoaccount at first 	were made in a draught-free atmosphere and at an rature within the range from 20 °C to 27 °C During he temperature was not vary by more than 1 %. and for at least 100 hat rated voltage. They were operated nin before a series of measurements is made. During assurement, lamps were installed as in normal use. The series were carried out under steady conditions. When a brought into operation or is taken out of operation, comatically, harmonic currents and power are not taken into 10s following the switching event. EUT shall not be in for more than 10% of any observation period.

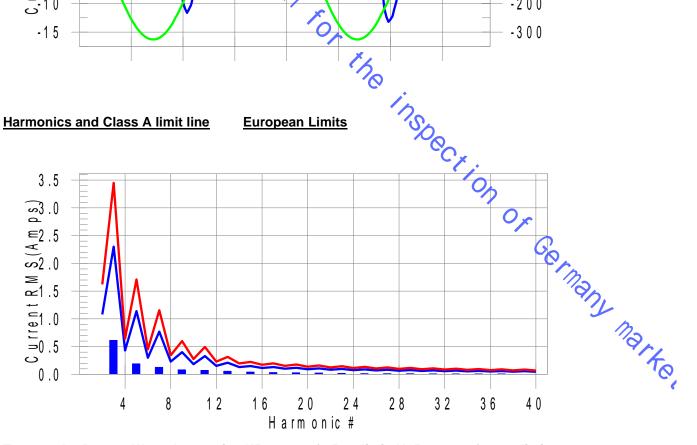
Page 24 of 71

12 M	For Atoria	power meter wit integrated in the 5. For each harmo current in each the measured value observation periharmonic current harmonic current	e fundamental current were measured using a digital h an analogue output and frequency analyser which was a harmonic & flicker test system. nic order, measure the 1,5 s smoothed r.m.s. harmonic DFT time window and calculate the arithmetic average of alues from the DFT time windows, over the entire lod. Each harmonic order, all 1.5 s smoothed r.m.s. In the values and the average values for the individual lots, taken over the entire test observation period shall be lead to the applicable limits.
	P	Temperature:	19.2°C
	Test Environment:	Humidity:	58.4%
		ATM pressure:	1015 mbar
	nar.	Test Date:	01/23/2022
		GMBH FO	The inspection of German Marker

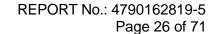
Measurement Data:

Mode 2 (worst case)


EUT: S270RR
Test category: Class-A per Ed. 4.0 (2014) (European limits)
Test date: 2022/1/23
Start time: 15:37:57
Tested by: Leon
Test Margin: 100
End time: 15:40:38


Test duration (min): 2.5 Data file name: H-000747.cts_data

Comment: Comments Customer: Customer


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Test result: Pass Worst harmonics H5-60.8% of 150% limit, H15-29.4% of 100% limit

Current Test Result Summary (Run time)

EUT: Equipment Under Test Tested by: Test Operator

Test category: Class-A per Ed. 4.0 (2014) (European limits) Test Margin: 100 Test date: 2022/1/23 Start time: 15:37:57 End time: 15:40:38

Test duration (min): 2.5 Data file name: H-000747.cts_data

Comment: Comments Customer: Customer

Test Result: Pass Source qualification: Normal

THC(A): 0.674 I-THD(%): 45.6 POHC(A): 0.049 POHC Limit(A): 0.251

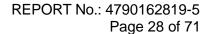
Highest parameter values during test:

 V_RMS (Volts):
 230.26
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 13.486
 I_RMS (Amps):
 4.885

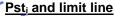
 I_Fund (Amps):
 4.146
 Crest Factor:
 10.220

 Power (Watts):
 945.8
 Power Factor:
 0.913

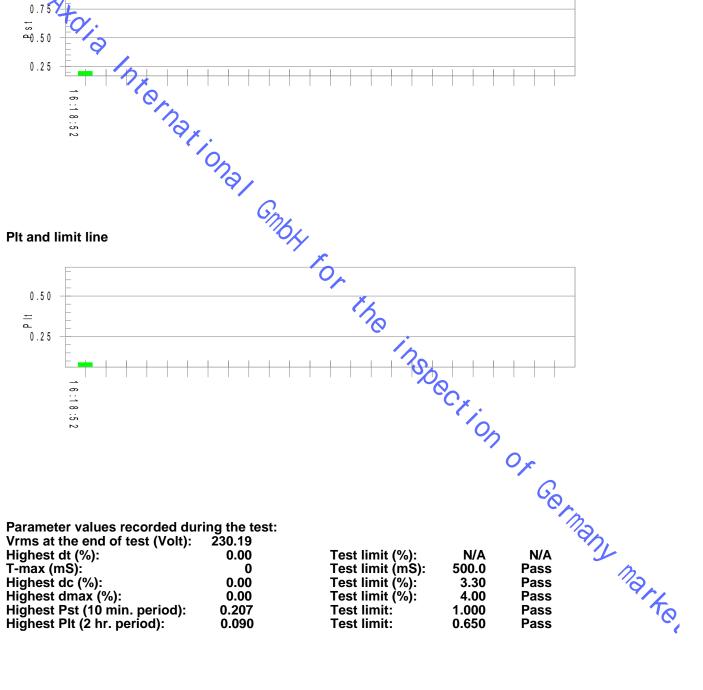

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status	
2	0.004	₫2080	N/A	0.051	1.620	N/A	Pass	
3	0.615	2.300	26.7	1.941	3.450	56.3	Pass	
4	0.005	0.430	N/A	0.072	0.645	N/A	Pass	
5 6	0.192	1.140	16.9	1.040	1.710	60.8	Pass	
6	0.004	0.300	' N/A	0.061	0.450	N/A	Pass	
7	0.130	0.770	16.9	0.553	1.155	47.9	Pass	
8	0.004	0.230	N/A	0.045	0.345	N/A	Pass	
9	0.085	0.400	21,24	0.298	0.600	49.7	Pass	
10	0.004	0.184	N/A	0.034	0.276	N/A	Pass	
11	0.074	0.330	22.3	0.180	0.495	36.4	Pass	
12	0.005	0.153	N/A	0.027	0.230	N/A	Pass	
13	0.058	0.210	27.8	0.113	0.315	36.0	Pass	
14	0.006	0.131	4.3	0.021	0.197	10.8	Pass	
15	0.044	0.150	29.4	0.074	0.225	32.7	Pass	
16	0.007	0.115	5.9	0.022	0.173	12.5	Pass	
17	0.035	0.132	26.5	0.049	. 0.198	24.7	Pass	
18	0.005	0.102	N/A	0.015	0.153	N/A	Pass	
19	0.031	0.118	26.4	0.038	(0,178	21.2	Pass	
20	0.004	0.092	N/A	0.011	0.138	N/A	Pass	
21	0.027	0.107	24.9	0.031	0.161	19.4	Pass	
22	0.003	0.084	N/A	0.008	0.125		Pass	
23	0.020	0.098	20.8	0.024	0.147	16.6	Pass	
24	0.004	0.077	N/A	0.012	0.115	O _A N/A	Pass	
25	0.016	0.090	17.5	0.020	0.135	14.9	Pass	
26	0.009	0.071	13.1	0.030	0.107	280		
27	0.015	0.083	18.0	0.033	0.125	26.1	Pass	
28	0.010	0.066	15.2	0.031	0.099	31.5	Pass	
29	0.014	0.078	18.5	0.035	0.116	30.1	Rass	
30	0.004	0.061	N/A	0.013	0.092	N/A	Pass	
31	0.012	0.073	16.9	0.023	0.109	20.9	Pass)_
32	0.002	0.058	N/A	0.010	0.086	N/A	Pass	7 1
33	0.011	0.068	15.4	0.019	0.102	18.4	Pass	
34	0.002	0.054	N/A	0.009	0.081	N/A	Pass	<i>?</i> -
35	0.010	0.064	16.3	0.018	0.096	18.9	Pass	19
36	0.001	0.051	N/A	0.008	0.077	N/A	Pass	1/4
37	0.011	0.061	17.3	0.017	0.091	18.8	Pass	10
38	0.001	0.048	N/A	0.008	0.073	N/A	Pass	
39	0.010	0.058	16.5	0.016	0.087	19.0	Pass	
40	0.001	0.046	N/A	0.006	0.069	N/A	Pass	

Page 27 of 71

6.1.5 FLICKER TEST


6.1.5 FLICKE	EK IESI		
Test Method:	EN 61000-3-3:20	13+A1:2019	
EUT Operation:			
Test Mode:	Mode 1 to Mode	3	
6 .	Test items	Limits(EN61000-3-3)	Descriptions
	P _{st}	≤1.0, T _p =10min	short-term flicker indicator
4	P _{it}	\leq 0.65, T _p =2h	long-term flicker indicator
Test Mode:	Tmax	≤3.3%	relative voltage change characteristic
	d _c	≤3.3%	relative steady-state voltage change
The state of the s	d _{max}	≪4%(or 6% _{Note(1)} , 7% _{Note(2)})	maximum relative voltage change:
	d (t)	\leqslant 3.3%, more than 500ms	relative voltage change characteristic
Test Setup:	The Test volt was 50 Hz ±0 2. The voltage to EUT. 3. The observation produces the mo	rage: was maintained within 0.5 %. fluctuations and flicker were tion period, Tp, for the assent, flicker simulation, or analog = 10 min; a = 2 h. period included that part of st unfavorable sequence of	the whole operation cycle in which the EUT
Test Environment	Temperature: Humidity:	19.2℃ 58.4%	f voltage changes.
	ATM pressure	: 1015 mbar	
	Test Date:	01/23/2022	

Measurement Data:


Test Mode	Verdict
Mode 2 (worst case)	PASS

European Limits

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 230 19

villis at the end of test (voit).	230.19	
Highest dt (%):	0.00	T
T-max (mS):	0	T
Highest dc (%):	0.00	T
Highest dmax (%):	0.00	T
Highest Pst (10 min. period):	0.207	Т
Highest Plt (2 hr. period):	0.090	Т
- · · · · · · · · · · · · · · · · · · ·		

Test limit (%):	N/A	N/A
Test limit (mS):	500.0	Pass
Test limit (%):	3.30	Pass
Test limit (\%):	4.00	Pass
Test limit: \('	1.000	Pass
Test limit:	0.650	Pass

Page 29 of 71

6.2 ELECTROMAGNETIC SUSCEPTIBILITY (IMMUNITY)

According to EN 55014-2:2015 standard, the general performance criteria as following:

Criterion A:

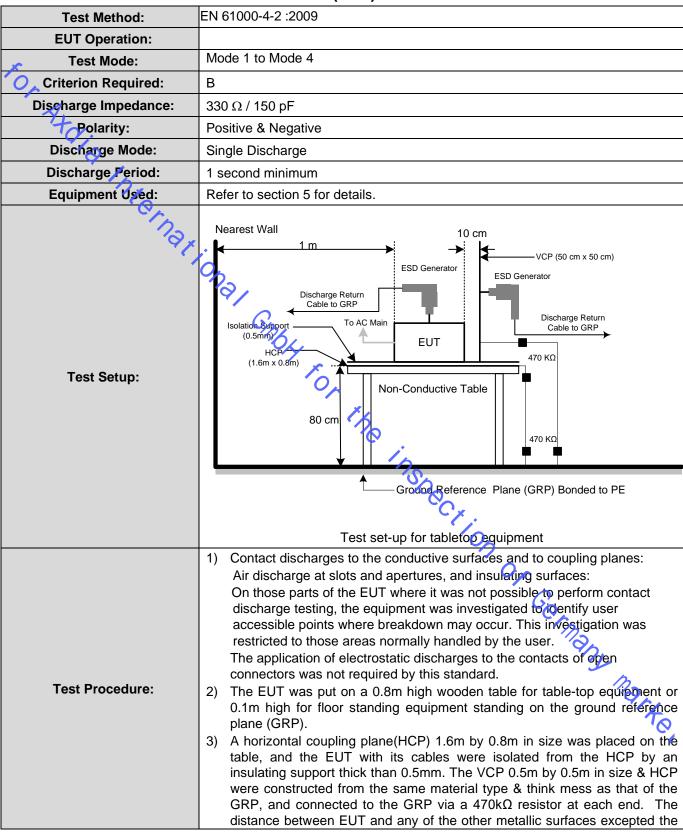
The apparatus shall continue to operate as intended during the test.

No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Criterion B.

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however no change of actual operating state or stored data is allowed to persist after the test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation,

Criterion C:


Temporary loss of function is allowed provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Ton Or Garman Marko

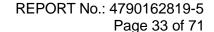
**T

6.2.1 ELECTROSTATIC DISCHARGE (ESD)

Page 31 of 71

To, A	 GRP, HCP and VCP was greater than 1m. 4) During the contact discharges, the tip of the discharge electrode was touch the EUT before the discharge switch is operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. 5) After each discharge, the ESD generator was removed from the EUT, the generator was then retriggered for a new single discharge. For ungrounded product, a discharge cable with two resistances was used after each discharge to remove remnant electrostatic voltage. 10 times of each polarity single discharge were applied to HCP and VCP.
Observations:	Test Point: 1. All insulated part of indicator lights and seams. 2. All accessible metal parts of the enclosure. 3. All sides.
Test Environment	Temperature: 19.6°C Humidity: 56.9%
	Test Date: 01/20/2022 The inspection of German Marke.

Page 32 of 71

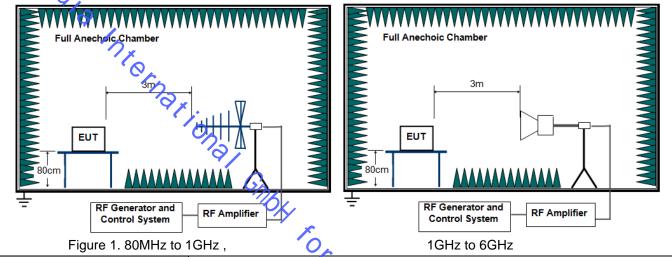

Test Results:

John Ton

[Direct Application	1			Test	Results
	Discharge Level (kV)	Polarity (+/-)	Test Point	Test Mode	Contact Discharge	Air Discharge
	1 8	+/-	1	Mode 1 to	N/A	А
7	to 4	+/-	2	Mode 4	А	N/A

Indirect Application Test Results

Indirect Application			Test F	Results
Discharge Level Polarity (kV) Polarity	Test Point	Test Mode	Horizontal Coupling	Vertical Coupling
4 +10	3	Mode 1 to Mode 4	N/A	А
Results: Pass a: No loss of function. I/A: Not Applicable (not requ	ired by Standa	ard).	inspection of	Gernany Mary



6.2.2 RADIATED IMMUNITY

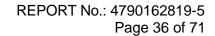
Test Procedure:

Test Method:	EN IEC 61000-4-3:2020
EUT Operation:	
Test Mode:	Mode 1 to Mode 4
Criterion Required:	A
Test Setup:	

- 1) For table-top equipment, the EUT was placed in the chamber on a non-conductive table 0.8m high. For arrangement of floor-standing equipment, the EUT was mounted on a non-conductive support 0.1m above the supporting plane. For human body-mounted equipment, the EUT may be tested in the same manner as table top items.
- 2) If possible, a minimum of 1 months cable is exposed to the electromagnetic field. Excess length of cables interconnecting units of the EUT shall be bundled low-inductively in the approximate center of the cable to form a bundle 30 cm to 40 cm in length.
- 3) The EUT was initially placed with one face coincident with the calibration plane. The EUT face being illuminated was contained within the UFA (Uniform Field Area).
- 4) The frequency ranges to be considered were swept with the signal modulated and pausing to adjust the RF signal level or to switch oscillators and antennas as necessary. Where the frequency range was swept incrementally, the step size was not exceed 1% of the preceding frequency value.
- 5) The dwell time of the amplitude modulated carrier at each frequency was not be less than the time necessary for the EUT to be exercised and to respond, and was not less than 0.5s.
- 6) The test normally was performed with the generating antenna facing each side of the EUT.
- 7) The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- 8) The EUT was performed in a configuration to actual installation conditions, a video camera, test data and/or an audio monitor were used to monitor the

Page 34 of 71

		performance of t	he EUT.
		Temperature:	19.2℃
T ₄	est Environment	Humidity:	63.2%
1		ATM pressure:	1015 mbar
10		Test Date:	01/23/2022
	Adja Internati	ional Compt to	he EUT. 19.2°C 63.2% 1015 mbar 01/23/2022



Page 35 of 71

Test Results:

John K

30MHz-	Level	Modulation	Dwell Time	Test Mode	Antenna Polarization	EUT Face	Result / Observations
					V	-	А
4					Н	Front	А
19/2					V	D	А
BOMHz- IGHz	3.V/m	1 kHz,	3s	Mode 1 to Mode	Н	Rear	А
0112	7	1 % step		4	V	l oft	Α
		increment			Н	Left	Α
		1 kHz, 80% Am, 1 % step increment White the state of the	D: 1.	Α			
		0/2			Н	Right	Α
					H		

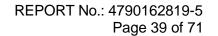
6.2.3 ELECTRICAL FAST TRANSIENTS (EFT)

6.2.3 ELECTRICAL	FASI IKANSIENIS (EFI)
Test Method:	EN 61000-4-4:2012
Took I ovel	± 1.0kV on AC port
Test Level:	± 0.5kV on signal port
Polarity:	Positive & Negative
Repetition Frequency:	5 kHz
Burst Period:	300ms
Test Duration:	2 minutes per level & polarity
EUT Operation:	
Test Mode:	Mode 1 to Mode 3
Test Setup:	AC Main or Combination Wave Generator EUT Port AE AC Main AE AC Main Online Reference ground
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1m thick and the GRP was placed on a 0.8m high wooden table for table-top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The GRP shall project beyond the EUT and the clamp by at least 0.1m on all sides. The distance between the EUT and any other of the metallic surface except the GRP was greater than 0.5m. All cables to the EUT was placed on the insulation support 0.1m above GRP. A cable not subject to EFT was routed as far as possible from cable under test to minimize the coupling between the cables. The length of signal and power cable between the EUT and EFT generator was 0.5m. If the cable is a non-detachable supply cable more than 0.5m, the excess length of this cable shall be folded to avoid a flat coil and situated at a distance of 0.1m above the GRP. The EUT was conducted the below specified test voltages for line and neutral or line, neutral and earth simultaneously (for telecommunication, single, control and DC port line with capacitive coupling clamp), 120 seconds duration. If the equipment contains identical ports only one was tested; multicomputer cables, such as a 50-pair telecommunication cable, were tested as a single cable. Cables did not be split or divided into groups of conductors for this test; interface ports, which were intended by the manufacturer to be connected to data cables not longer than 3 m, did not be tested.

REPORT No.: 4790162819-5

Page 37 of 71

The inspection of German Marker 19.5℃ Temperature:



REPORT No.: 4790162819-5

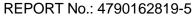
Page 38 of 71

Test Results:

Lead under Test AC Power Port	Level (±kV)	Coupling Direct/Clamp	Test mode	OBSERVATIONS (PERFORMANCE CRITERION)
AC Power Port	1.0	Direct	Mode 1 to Mode 3	А
ults: Pass i: lo loss of function.	*ional Gi	By For the	inspection.	or Germany Mark

6.2.4 SURGE IMMUNITY

6.2.4 SURGE IMM	ONLIT
Test Method:	EN 61000-4-5:2014+A1:2017
Test Level:	\pm 1.0 kV Line to Line
7001 E0V01.	± 2.0 kV Line to Earth
Criterion Required:	В
Polarity:	Positive & Negative
Interval:	60s between each surge
No. of Surges:	5 positive at 0°, 5 negative at 90°
EUT Operation:	
Test Mode? x	Mode 1 to Mode 3
Test Setup:	AC Main or DC Power Supplyed Reference ground ed For AC port
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1 m thick and the GRP was placed on a 0.8m high wooden table for table top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The 1.2/50 μs surge was to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks were required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines and to provide sufficient decoupling impedance to the surge wave so that the specified wave may be applied on the lines under test. The power cord between the EUT and the coupling/decoupling network was not exceed 2 m in length. The interconnection line between the EUT and the coupling/ decoupling network shall not exceed 2 m in length. The EUT was conducted 0.5 kV and 1 kV test voltage for line to line and line to neutral and conducted 0.5 kV, 1 kV and 2 kV test voltage for line to earth and neutral to earth, five positive pulses and five negative pulses each at 0°, 90°, 180° and 270° for a.c. power ports and five positive pulses and five negative surge pulses for d.c. power ports (for telecommunication port, if was 0.5 kV for indoor cable longer than 10m line to ground and 0.5kV,1kV test voltage for outdoor cable line to ground, five positive pulses and five negative surge pulses), The test levels were applied on the EUT with a 2 Ω generator source impedance for power supply terminals and 40Ω output impedance for interconnection lines. The tests were done at repetition rate one per minute.

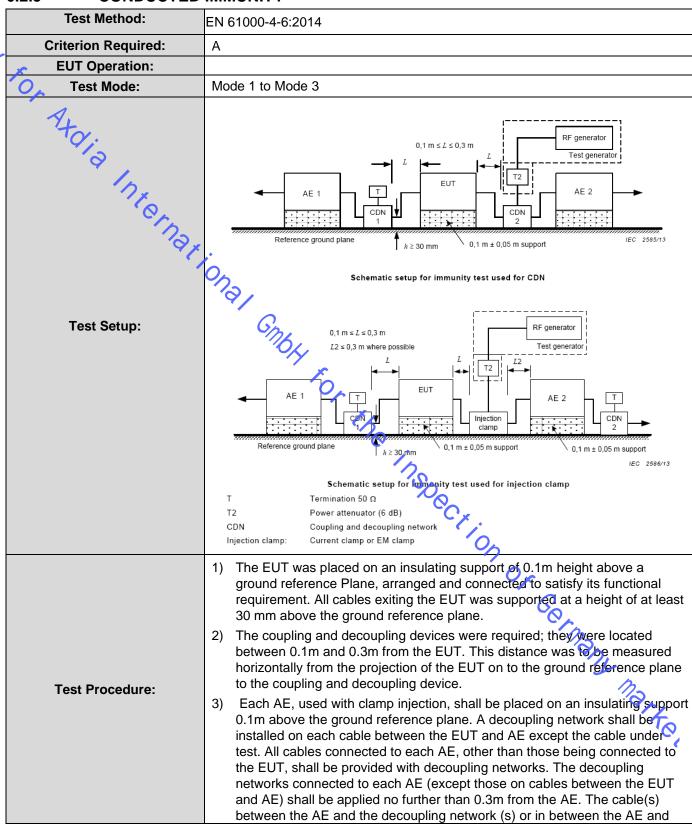


REPORT No.: 4790162819-5

Page 40 of 71

19.5℃ Temperature:

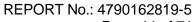
The inspection of Cernary Marker


Page 41 of 71

Test Results:

1/2/2	Pulse No	Line- Line	Level (kV)	Surge Interval	Phase (deg)	Test Mode	Observation (Performance Criterion)
K	1–5	L-N	+1	60 s	90°		Α
C	∽ 6–10	L-N	-1	60 s	270°		Α
	117- 15	L-PE	+2	60 s	90°	Mode 1 to	Α
	16 20	L-PE	-2	60 s	270°	Mode 3	Α
	21-25	N-PE	+2	60 s	90°		А
	26-30	N-PE	-2	60 s	270°		А
	Note: A: No loss of	function.	Parion.				
			9/	Gni			
			9/	GMBH F			
			4/	GMbH FC	or the		
			4	GnbH Fo	or the	ine.	
				GnbH FC	Dr the	inspec,	
				GnbH FC	or the	inspection	
				GMBH FC	or the	inspection	Ox
				GMBH FC	in the	inspection	OrGo
				GMBH FC	or the	inspection	Or Corn-
				Gnb _H Fo	Dr. the	inspection	Of German,
				GMBH FC	in the	inspection	or cormany a
				GMBH FC	or the	inspection	Or Cornany man
				Gnb _H Fo		inspection	of Germany mark
				GMBH FC	in the	inspection	of Gernany Mark

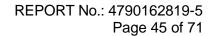
6.2.5 CONDUCTED IMMUNITY



REPORT No.: 4790162819-5

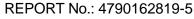
Page 43 of 71

12/2 V	Test Environment	between 30mm 4) The frequency ralevels established 80 % amplitude signal level or to frequency was spreceding frequency carrier at each frequency and the statement of the stat	and 50mm above the ground reference plane. ange was swept from 150 kHz to 80MHz, using the signal and during the setting process, and with the disturbance signal modulated with a 1 kHz sine wave, pausing to adjust the RF or change coupling devices as necessary. Where the swept incrementally, the step size does not exceed 1% of the ency value. The dwell time of the amplitude modulated requency was not less than the time necessary for the EUT and to respond, and was not less than 0.5 s.
	TO	Temperature:	19.5℃
	Test Environment	Humidity:	64.3%
	rest Environment	ATM pressure:	1027 mbar
	No.	Test Date:	01/20/2022
		GMbH FO	64.3% 1027 mbar 01/20/2022 The inspection of German Market



Page 44 of 71

Test Results:


Frequency	Line	Test Level	Modulation	Step Size	Dwell Time	Test Mode	Observation (Performance Criterion)
015 MHz to 80 MHz	AC Power Port	3V r.m.s	1 kHz, 80%, Amp. Mod	1%	3s	Mode 1 to Mode 3	А
Results: Pa	\$ 9 .						
ote: No loss of	function.						
	orna .						
	₹(ion					
		4/	G_{k}				
			M64				
			Por				
				×,			
				, JO			
				'Ne	100		
				'no /	inspect	× .	
				`?@/	inspect	rion	
				`?@ /	inspect	*ion or	,
	function.				inspect	rion or G	orno.
					inspect	*ion of G	ornany a
					inspect	* jon 0 x 6	armany mar
					inspect	*jon ox G	Gernany Mark

6.2.6 VOLTAGE DIPS AND INTERRUPTIONS

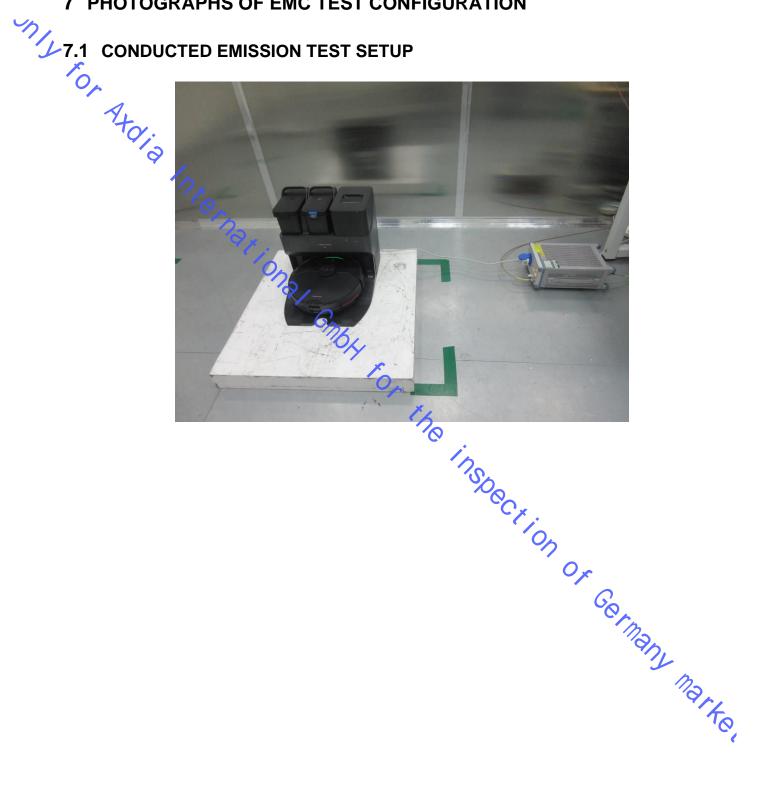
Test Method:	EN IEC 61000-4-11:2020
Test Level:	1) Voltage dip: 0 % UT voltage for 0.5 cycle; 2) Voltage dip: 40 % UT voltage for 10 cycle; 3) Voltage dip: 70 % UT voltage for 25 cycles; Note: UT is the rated voltage of the equipment under test.
No. of Dips / Interruptions:	3 per Level
EUT Operation:	
Cest Mode:	Mode 1 to Mode 3
Test Setup:	AC Main Combination Wave Generator EUT Port AE AC Main AE AC Main O.1m
Test Procedure:	 The EUT was placed on a ground reference plane(GRP) insulated by an insulating support 0.1 m thick and the GRP was placed on a 0.8m high wooden table for table-top equipment. For floor standing equipment, the EUT was placed on a 0.1m high wooden support above the GRP. The test was performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer. The EUT was tested for each selected combination of test level and duration with a sequence of three dips /interruptions with intervals of 10 s minimum. Each representative mode of operation was tested. For EUT with more than one power cord, each power cord was tested individually.
	Temperature: 19.5 °C Humidity: 64.3% ATM pressure: 1027 mbar Test Date: 01/20/2022
Test Environment	Humidity: 64.3%
	ATM pressure: 1027 mbar
	Test Date: 01/20/2022
	Germany Marke

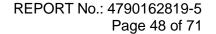
Page 46 of 71

Test Results:

10/1 /

Test Level % U _T	Phase	Duration of drop out in Periods	No. of drop out	Time between drop out	Test Mode	Observations (Performance Criterion)
10	0°, 180°	0.5	3	10s	Mada 4 ta	А
40/	0°, 180°	10	3	10s	Mode 1 to Mode 3	Α
70 💙	0°, 180°	25	3	10s		Α
o loss of functi	on.	ona, Gnon				
			Top the	10s 10s	0,5	


Results: Pass


Note:

A: No loss of function.

7 PHOTOGRAPHS OF EMC TEST CONFIGURATION

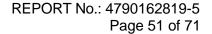
7.2 **RADIATED EMISSION TEST SETUP**

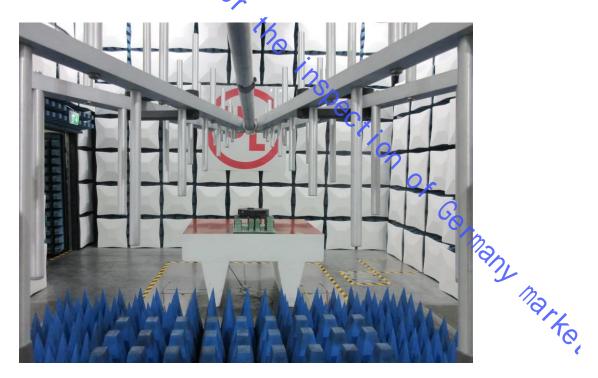
My for Atolia 30MHz ~ 1000MHz many marker

REPORT No.: 4790162819-5 Page 49 of 71

7.3 HARMONIC CURRENT & VOLTAGE FLUCTUATION AND FLICK The for Adia **MEASUREMENT**

GMBH FOR The IDE

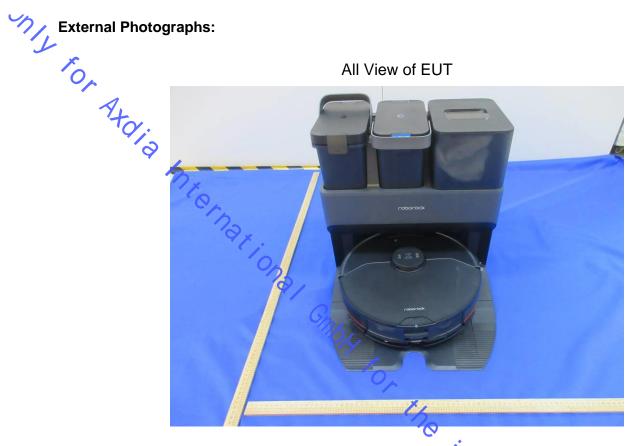

7.4 **ESD**

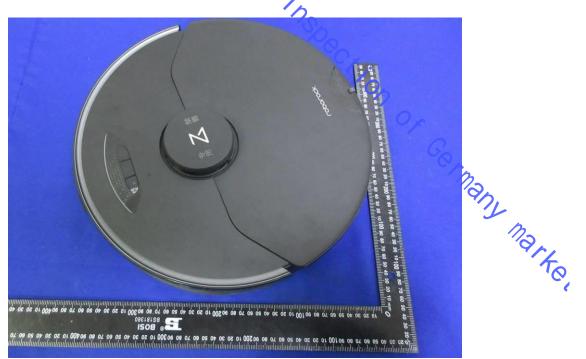

Gnort for the inspection of Germany Marker

7.5 RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY

REPORT No.: 4790162819-5 Page 52 of 71

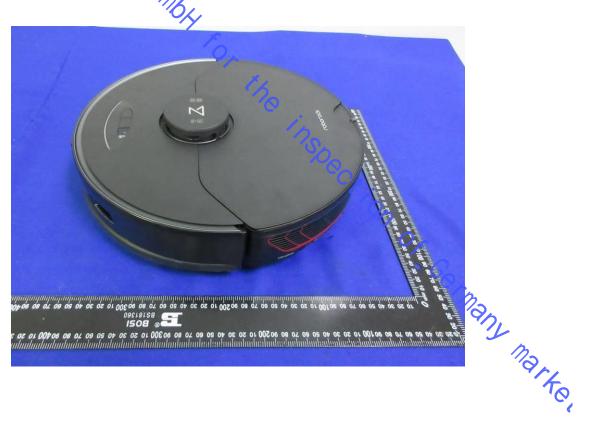
7.6 **ELECTRICAL FAST TRANSIENT/BURST/SURGE/DIPS**


My for Atolia ornational Gnortor the


7.7 **CONDUCTED IMMUNITY**

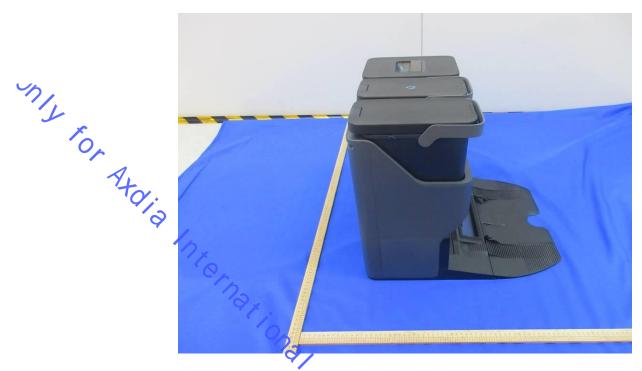
8 PHOTOGRAPHS FO THE EUT

"My For Atoria



Shy for Atolia

Shy for Atoria.



My For Atolia

CODOCOCK Empty Wash Fill Dock

WARNING:

Before charging, read the instructions. For indoor use or do not expose to rain.

Model: EWFD01HRR

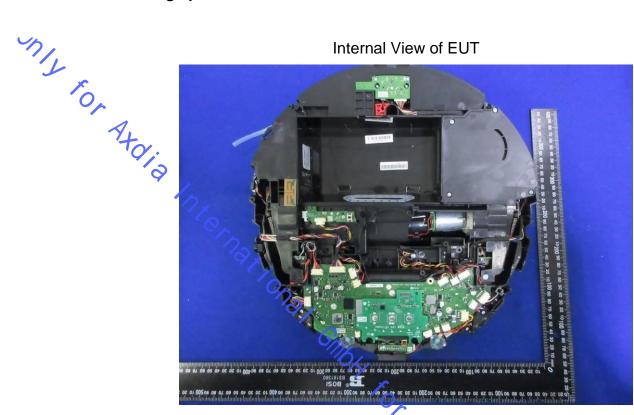
Rated Input (Dust Collection): 220-240VAC 50-60Hz 5A Rated Input (Charge): 220-240VAC 50-60Hz 0.5A

Rated Output: 20VDC 1.8A

Beijing Roborock Technology Co., Ltd. Floor 6, Suite 6016, 6017, 6018, Building C, Kangjian Baosheng Plaza, No.8 Heiguan Road, Haidian District, Beijing, P.R. China Made in China

Importer: Poborock International B.V.

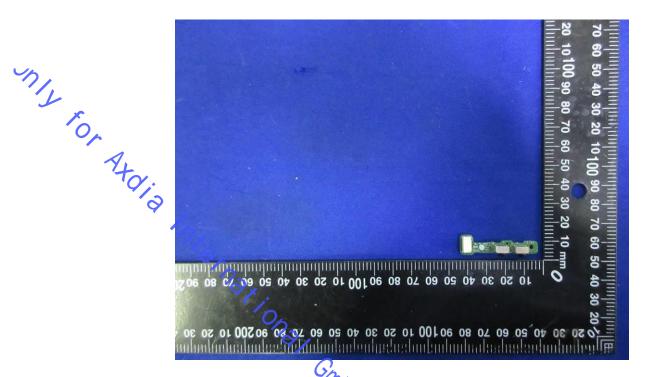
Address of Importer: Strawinskylaan 3051, Atrium, 1077ZX Amsterdam.

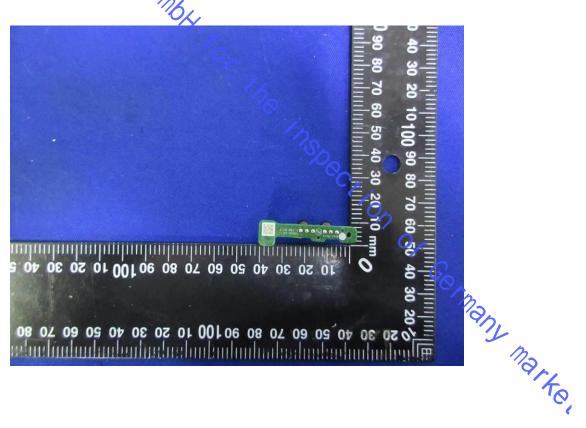

zk Internatio.

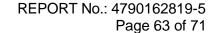
onal Combitor the inspection of Cornany Narkol

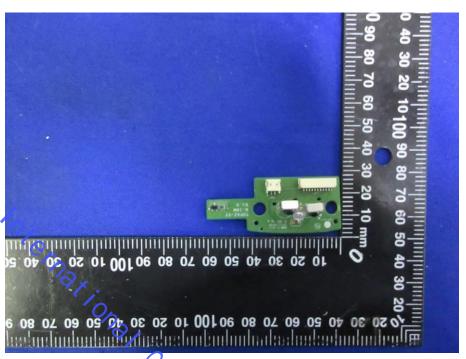
Internal Photographs

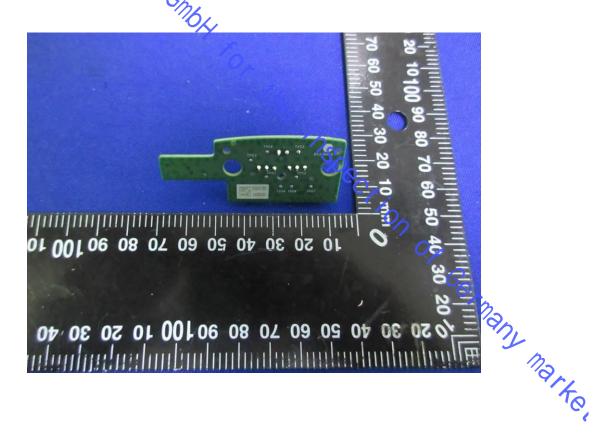
Internal View of EUT

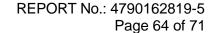



The Adia ha

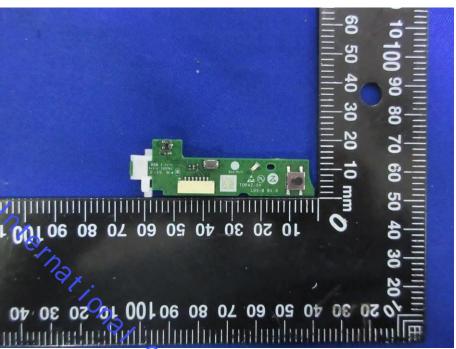


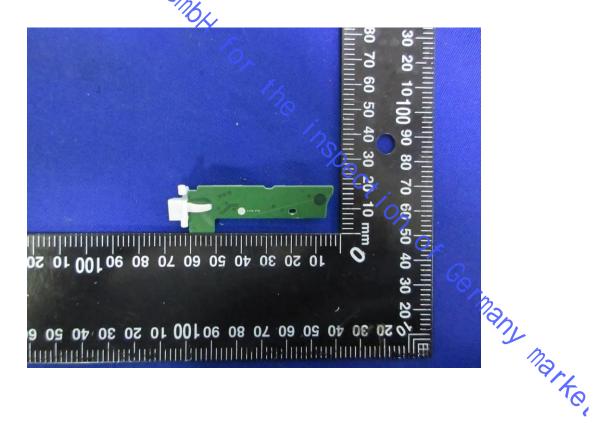


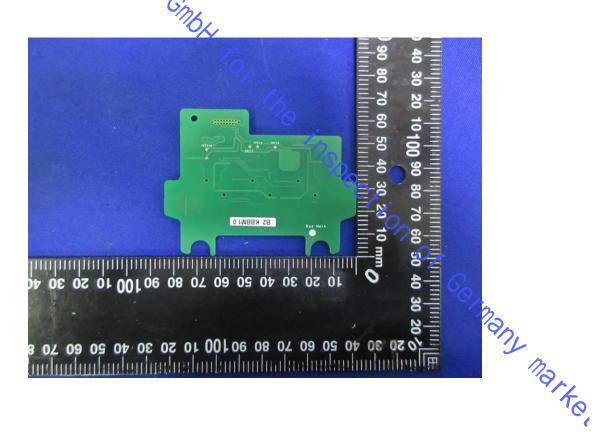


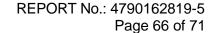


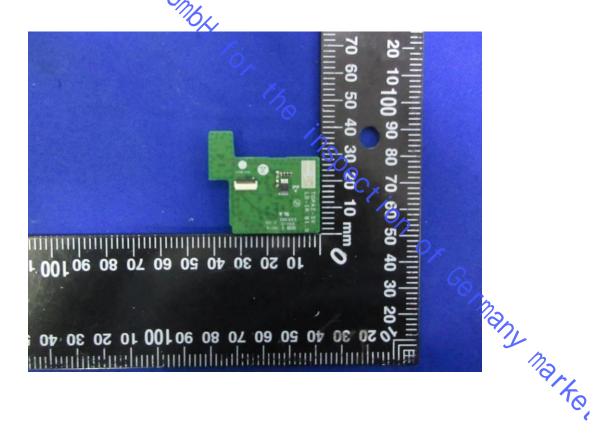
My For Atolia

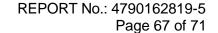


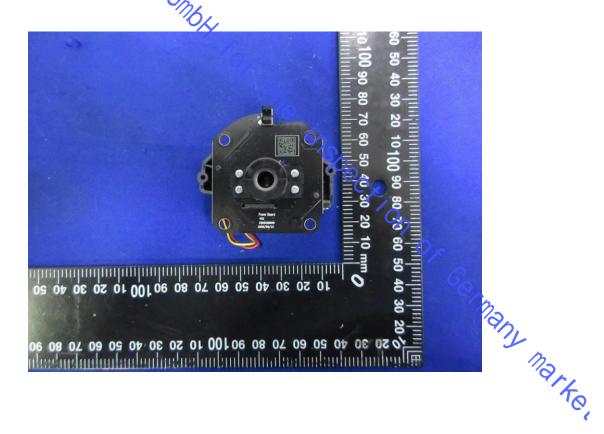


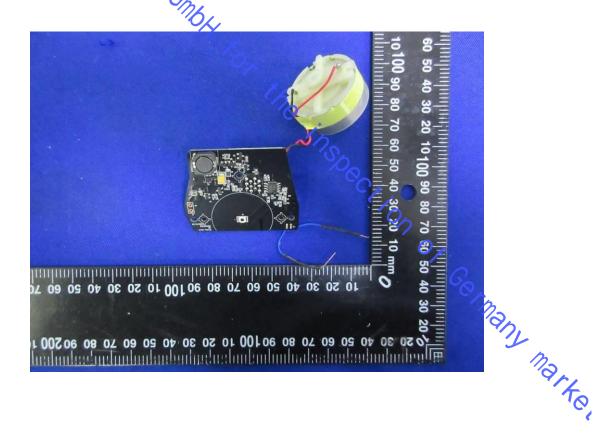


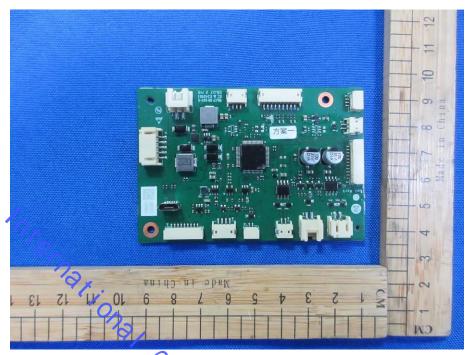

The Atolia Col 06 08



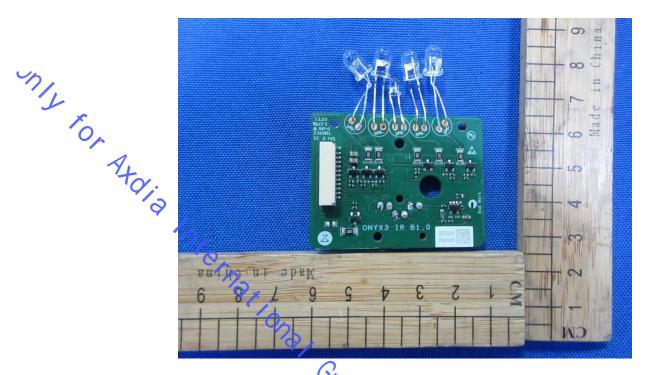


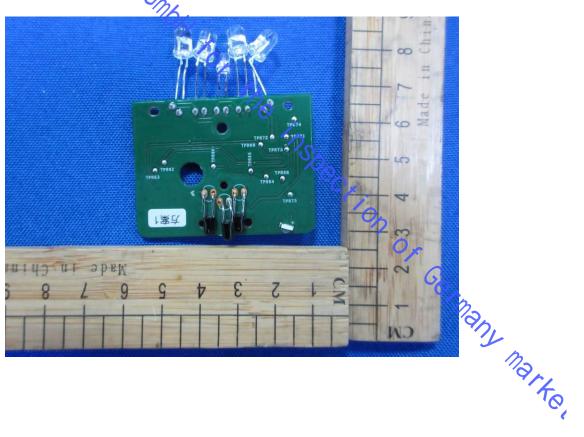






200 90 80 70 80 80 10 100 90 80 70 80 8




"My for Atdia

END OF REPORT